P. G. Conrad

ORCID: 0000-0001-5724-3343
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Planetary Science and Exploration
  • Astro and Planetary Science
  • Space Exploration and Technology
  • Space Science and Extraterrestrial Life
  • Isotope Analysis in Ecology
  • Spaceflight effects on biology
  • Geology and Paleoclimatology Research
  • Atmospheric and Environmental Gas Dynamics
  • High-pressure geophysics and materials
  • Spacecraft Design and Technology
  • Scientific Research and Discoveries
  • Geological and Geochemical Analysis
  • Crystal Structures and Properties
  • Methane Hydrates and Related Phenomena
  • Nuclear Physics and Applications
  • Polar Research and Ecology
  • Marine and environmental studies
  • Microbial Community Ecology and Physiology
  • Spacecraft and Cryogenic Technologies
  • Paleontology and Stratigraphy of Fossils
  • Chemical Analysis and Environmental Impact
  • Advanced Chemical Sensor Technologies
  • Pleistocene-Era Hominins and Archaeology
  • Mass Spectrometry Techniques and Applications
  • Space exploration and regulation

Carnegie Institution for Science
1998-2023

Jet Propulsion Laboratory
2001-2022

Goddard Space Flight Center
2011-2022

University of the Basque Country
2022

Finnish Meteorological Institute
2022

Instituto Nacional de Técnica Aeroespacial
2022

National Institute of Aerospace
2022

Instituto de Química Física Blas Cabrera
2022

Ames Research Center
2022

Johns Hopkins University Applied Physics Laboratory
2022

The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of environment that would have been suited support a martian biosphere founded on chemolithoautotrophy. This aqueous was characterized by neutral pH, low salinity, variable redox states both iron sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, phosphorus were measured directly as key biogenic elements; inference, is assumed available. probably had...

10.1126/science.1242777 article EN Science 2013-12-10

Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated explore habitability Mars. This includes both modern environments as well ancient recorded by stratigraphic rock record preserved at Gale crater landing site. The Curiosity rover has a designed lifetime least one year (∼23 months), and drive capability 20 km. Curiosity's science payload specifically assembled assess gas chromatograph-mass spectrometer analyzer that will search for organic carbon...

10.1007/s11214-012-9892-2 article EN cc-by Space Science Reviews 2012-07-24

Sedimentary rocks at Yellowknife Bay (Gale crater) on Mars include mudstone sampled by the Curiosity rover. The samples, John Klein and Cumberland, contain detrital basaltic minerals, calcium sulfates, iron oxide or hydroxides, sulfides, amorphous material, trioctahedral smectites. smectite has basal spacing of ~10 angstroms, indicating little interlayer hydration. Cumberland both ~13.2 angstroms. larger suggests a partially chloritized magnesium facilitating H2O retention. Basaltic minerals...

10.1126/science.1243480 article EN Science 2013-12-10

Ancient lake system at Gale crater Since 2012, the Curiosity rover has been diligently studying rocky outcrops on Mars, looking for clues about past water, climate, and habitability. Grotzinger et al. describe analysis of a huge section sedimentary rocks near crater, where Mount Sharp now stands (see Perspective by Chan). The features within these sediments are reminiscent delta, stream, deposits Earth. Although individual lakes were probably transient, it is likely that there was enough...

10.1126/science.aac7575 article EN Science 2015-10-08

The Sample Analysis at Mars (SAM) investigation of the Science Laboratory (MSL) addresses chemical and isotopic composition atmosphere volatiles extracted from solid samples. SAM is designed to contribute substantially mission goal quantitatively assessing habitability as an essential step in search for past or present life on Mars. a 40 kg instrument suite located interior MSL's Curiosity rover. instruments are quadrupole mass spectrometer, tunable laser 6-column gas chromatograph all...

10.1007/s11214-012-9879-z article EN cc-by Space Science Reviews 2012-04-26

Abstract The Sample Analysis at Mars (SAM) instrument on board the Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of atmosphere surface regolith rocks help evaluate past present habitability potential Gale Crater. Central this task development an inventory any molecules elucidate processes associated with their origin, diagenesis, concentration, long‐term preservation. This will guide future search for biosignatures. Here we report...

10.1002/2014je004737 article EN cc-by-nc-nd Journal of Geophysical Research Planets 2015-03-01

Establishing the presence and state of organic matter, including its possible biosignatures, in martian materials has been an elusive quest, despite limited reports existence matter on Mars. We report situ detection preserved lacustrine mudstones at base ~3.5-billion-year-old Murray formation Pahrump Hills, Gale crater, by Sample Analysis Mars instrument suite onboard Curiosity rover. Diverse pyrolysis products, thiophenic, aromatic, aliphatic compounds released high temperatures (500° to...

10.1126/science.aas9185 article EN cc-by-nc-nd Science 2018-06-07

Reports of plumes or patches methane in the martian atmosphere that vary over monthly time scales have defied explanation to date. From situ measurements made a 20-month period by tunable laser spectrometer Sample Analysis at Mars instrument suite on Curiosity Gale crater, we report detection background levels atmospheric mean value 0.69 ± 0.25 parts per billion volume (ppbv) 95% confidence interval (CI). This abundance is lower than model estimates ultraviolet degradation accreted...

10.1126/science.1261713 article EN Science 2014-12-17

Samples from the Rocknest aeolian deposit were heated to ~835°C under helium flow and evolved gases analyzed by Curiosity’s Sample Analysis at Mars instrument suite. H 2 O, SO , CO O major released. Water abundance (1.5 3 weight percent) release temperature suggest that is bound within an amorphous component of sample. Decomposition fine-grained Fe or Mg carbonate likely source much . Evolved coincident with Cl, suggesting oxygen produced thermal decomposition oxychloride compound. Elevated...

10.1126/science.1238937 article EN Science 2013-09-26
P. R. Mahaffy Christopher R. Webster S. K. Atreya H. B. Franz Michael Wong and 95 more P. G. Conrad D. N. Harpold John J. Jones L. A. Leshin H. L. K. Manning Tobias Owen R. O. Pepin S. W. Squyres M. G. Trainer Osku Kemppinen Nathan Bridges J. R. Johnson M. E. Minitti David A. Cremers J. F. Bell Lauren Edgar Jack D. Farmer Austin Godber M. Wadhwa Danika Wellington Ian McEwan Claire Newman M. I. Richardson Antoine Charpentier Laurent Péret P. L. King J. G. Blank Gerald Weigle M. E. Schmidt Shuai Li R. E. Milliken Kevin Robertson V. Z. Sun Michael B. Baker Christopher Edwards Bethany Ehlmann Kenneth Farley J. L. Griffes J. P. Grotzinger Hayden Miller Megan Newcombe C. Pilorget M. S. Rice Kirsten Siebach Katie Stack Edward M. Stolper Claude Brunet V. Hipkin Richard Léveillé Geneviève Marchand Pablo Sobrón Sánchez Laurent Favot George D. Cody A. Steele Lorenzo Flückiger David Lees Ara Nefian Mildred Martin M. Gailhanou Francès Westall Guy Israël Christophe Agard Julien Baroukh Christophe Donny Alain Gaboriaud Philippe Guillemot Vivian Lafaille Eric Lorigny Alexis Paillet R. Pérez M. Saccoccio Charles Yana Carlos Armiens‐Aparicio Javier Caride Rodríguez Isaías Carrasco Blázquez Felipe Gómez Javier Gómez‐Elvira Sebastian Hettrich Alain Lepinette Malvitte Mercedes Marín Jiménez Jesús Martínez‐Frías Javier Martín-Soler Javier Martín‐Torres Antonio Molina Jurado Luis Mora‐Sotomayor G. M. Muñoz Sara Navarro López Verónica Peinado-González Jorge Pla-García J. A. Rodríguez‐Manfredi Julio José Romeral-Planelló Sara Alejandra Sans Fuentes Eduardo Sebastian Martinez J. Torres Roser Urqui-O'Callaghan

Volume mixing and isotope ratios secured with repeated atmospheric measurements taken the Sample Analysis at Mars instrument suite on Curiosity rover are: carbon dioxide (CO2), 0.960(±0.007); argon-40 ((40)Ar), 0.0193(±0.0001); nitrogen (N2), 0.0189(±0.0003); oxygen, 1.45(±0.09) × 10(-3); monoxide, < 1.0 (40)Ar/(36)Ar, 1.9(±0.3) 10(3). The (40)Ar/N2 ratio is 1.7 times greater (40)Ar/(36)Ar 1.6 lower than values reported by Viking Lander mass spectrometer in 1976, whereas other are generally...

10.1126/science.1237966 article EN Science 2013-07-18

The Mars Science Laboratory rover Curiosity scooped samples of soil from the Rocknest aeolian bedform in Gale crater. Analysis with Chemistry and Mineralogy (CheMin) x-ray diffraction (XRD) instrument revealed plagioclase (~An57), forsteritic olivine (~Fo62), augite, pigeonite, minor K-feldspar, magnetite, quartz, anhydrite, hematite, ilmenite. phases are present at, or near, detection limits. also contains 27 ± 14 weight percent amorphous material, likely containing multiple Fe 3+ -...

10.1126/science.1238932 article EN Science 2013-09-26

H 2 O, CO , SO O S, HCl, chlorinated hydrocarbons, NO, and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, amorphous materials. Thermal decomposition carbonates combustion organic materials are candidate sources for . Concurrent evolution hydrocarbons suggests presence oxychlorine phase(s). Sulfides likely...

10.1126/science.1245267 article EN Science 2013-12-10

A single scoop of the Rocknest aeolian deposit was sieved (&lt; 150 µm), and four separate sample portions, each with a mass ~50 mg, were delivered to individual cups inside Sample Analysis at Mars (SAM) instrument by Science Laboratory rover's acquisition system. The samples analyzed separately SAM pyrolysis evolved gas chromatograph spectrometer analysis modes. Several chlorinated hydrocarbons including chloromethane, dichloromethane, trichloromethane, chloromethylpropene, chlorobenzene...

10.1002/jgre.20144 article EN Journal of Geophysical Research Planets 2013-10-01

Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved an approximately average martian crustal composition to one influenced alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold, paleoclimates and rapid erosion deposition. The absence predicted geochemical variations indicates magnetite phyllosilicates formed diagenesis under low-temperature, circumneutral pH, rock-dominated aqueous...

10.1126/science.1244734 article EN Science 2013-12-10
K. A. Farley C. A. Malespin Paul Mahaffy J. P. Grotzinger Paulo Vasconcelos and 95 more R. E. Milliken M. C. Malin K. S. Edgett Alexander A. Pavlov J. A. Hurowitz J. A. Grant Hayden Miller R. E. Arvidson L. W. Beegle F. J. Calef P. G. Conrad W. E. Dietrich J. L. Eigenbrode R. Gellert Sanjeev Gupta V. E. Hamilton Donald M. Hassler K. W. Lewis S. M. McLennan D. W. Ming R. Navarro‐González S. P. Schwenzer A. Steele E. M. Stolper D. Y. Sumner D. T. Vaniman A. R. Vasavada Kenneth H. Williford R. F. Wimmer‐Schweingruber David F. Blake T. F. Bristow David J. DesMarais Laurence Edwards Robert Haberle Tori Hoehler Jeff Hollingsworth Melinda Kahre Leslie Keely Christopher P. McKay Mary Beth Wilhelm Lora Bleacher W. B. Brinckerhoff David S. Choi Jason P. Dworkin Melissa Floyd Caroline Freissinet James Garvin D. P. Glavin Daniel Harpold David K. Martin A. C. McAdam E. Raaen M. D. Smith J. C. Stern Florence Tan M. G. Trainer Michael A. Meÿer A. Posner Mary Voytek Robert C. Anderson A. D. Aubrey Alberto Behar Diana Blaney D. E. Brinza L. E. Christensen Joy A. Crisp Lauren DeFlores Jason Feldman Sabrina Feldman Gregory J. Flesch J. A. Hurowitz I. Jun Didier Keymeulen Justin Maki Michael Mischna John Michael Morookian T. J. Parker Betina Pavri Marcel Schoppers Aaron Sengstacken John J. Simmonds N. Spanovich Manuel de la Torre Juárez Christopher R. Webster Albert Yen P. D. Archer Francis A. Cucinotta J. H. Jones Richard V. Morris P. B. Niles Elizabeth Rampe Thomas Nolan Martin Fisk Leon J. Radziemski Bruce Barraclough

We determined radiogenic and cosmogenic noble gases in a mudstone on the floor of Gale Crater. A K-Ar age 4.21 ± 0.35 billion years represents mixture detrital authigenic components confirms expected antiquity rocks comprising crater rim. Cosmic-ray-produced (3)He, (21)Ne, (36)Ar yield concordant surface exposure ages 78 30 million years. Surface occurred mainly present geomorphic setting rather than during primary erosion transport. Our observations are consistent with deposition shortly...

10.1126/science.1247166 article EN Science 2013-12-10
J. C. Stern B. Sutter Caroline Freissinet R. Navarro‐González Christopher P. McKay and 95 more P. D. Archer A. Buch Anna Brunner Patrice Coll J. L. Eigenbrode Alberto González Fairén H. B. Franz D. P. Glavin Srishti Kashyap A. C. McAdam D. W. Ming A. Steele Cyril Szopa J. J. Wray Javier Martín‐Torres Marìa‐Paz Zorzano P. G. Conrad P. R. Mahaffy Osku Kemppinen N. T. Bridges J. R. Johnson M. E. Minitti David A. Cremers James F. Bell L. A. Edgar Jack D. Farmer Austin Godber M. Wadhwa Danika Wellington Ian McEwan Claire Newman M. I. Richardson Antoine Charpentier Laurent Péret P. L. King J. G. Blank Gerald Weigle M. E. Schmidt Shuai Li R. E. Milliken Kevin Robertson V. Z. Sun Michael B. Baker Christopher S. Edwards B. L. Ehlmann K. A. Farley J. Shechet J. P. Grotzinger Hayden Miller Megan Newcombe C. Pilorget M. S. Rice K. L. Siebach Katie Stack Edward M. Stolper C. Brunet V. Hipkin Richard Léveillé Geneviève Marchand Pablo Sobrón Sánchez Laurent Favot George D. Cody A. Steele Lorenzo Flückiger David Lees Ara Nefian Mildred Martin Francès Westall G. Israël Christophe Agard Julien Baroukh Christophe Donny Philippe Guillemot Vivian Lafaille Eric Lorigny Alexis Paillet R. Pérez M. Saccoccio Charles Yana Carlos Armiens‐Aparicio Javier Caride Rodríguez Isaías Carrasco Blázquez Felipe Gómez Javier Gómez‐Elvira Sebastian Hettrich Alain Lepinette Malvitte Mercedes Marín Jiménez Jesús Martínez‐Frías Javier Martín-Soler F. Javier Martín - Torres Antonio Molina Jurado Luis Mora‐Sotomayor G. M. Muñoz Sara Navarro López Verónica Peinado-González

Significance We present data supporting the presence of an indigenous source fixed nitrogen on surface Mars in form nitrate. This may indicate first stage development a primitive cycle ancient and would have provided biochemically accessible nitrogen.

10.1073/pnas.1420932112 article EN Proceedings of the National Academy of Sciences 2015-03-23

Abstract The Scanning Habitable Environments with Raman and Luminescence for Organics Chemicals (SHERLOC) is a robotic arm-mounted instrument on NASA’s Perseverance rover. SHERLOC has two primary boresights. Spectroscopy boresight generates spatially resolved chemical maps using fluorescence spectroscopy coupled to microscopic images (10.1 μm/pixel). second Wide Angle Topographic Sensor Operations eNgineering (WATSON); copy of the Mars Science Laboratory (MSL) Hand Lens Imager (MAHLI) that...

10.1007/s11214-021-00812-z article EN cc-by Space Science Reviews 2021-05-25

The Perseverance rover landed in Jezero crater, Mars, February 2021. We used the Scanning Habitable Environments with Raman and Luminescence for Organics Chemicals (SHERLOC) instrument to perform deep-ultraviolet fluorescence spectroscopy of three rocks within crater. identify evidence two distinct ancient aqueous environments at different times. Reactions liquid water formed carbonates an olivine-rich igneous rock. A sulfate-perchlorate mixture is present rocks, which probably by later...

10.1126/science.abo5204 article EN Science 2022-11-23

Abstract The presence and distribution of preserved organic matter on the surface Mars can provide key information about Martian carbon cycle potential planet to host life throughout its history. Several types molecules have been previously detected in meteorites 1 at Gale crater, 2–4 . Evaluating diversity detectability elsewhere is important for understanding extent processes availability sources 1,5,6 Here we report detection Raman fluorescence spectra consistent with several species...

10.1038/s41586-023-06143-z article EN cc-by Nature 2023-07-12

We present near edge X-ray absorption spectra of manganese oxides at the Mn L2,3, K, and O K edges to investigate relative sensitivity bonding structure. Collectively, probe local electronic structure intermediate range crystal Spin independent full multiple scattering calculations give good agreement with data above threshold qualitatively reproduce prepeak that is observed for each compound. show apparent MnO not due p−d hybridization atom (in accordance symmetry principles) or quadrupolar...

10.1021/jp021493s article EN The Journal of Physical Chemistry A 2003-03-29

Abiotic Martian Organics Understanding the sources and formation mechanisms of organic carbon compounds on Mars has implications for our understanding martian cycle. Steele et al. (p. 212 , published online 24 May) present measurements material in 11 meteorites, including Tissint meteorite, which fell Moroccan desert July 2011. Ten meteorites contain complex hydrocarbons encased within igneous minerals. The results imply that organics formed as magma melt crystallized are thus abiotic origin.

10.1126/science.1220715 article EN Science 2012-05-25

The deuterium-to-hydrogen (D/H) ratio in strongly bound water or hydroxyl groups ancient martian clays retains the imprint of formation these minerals. Curiosity's Sample Analysis at Mars (SAM) experiment measured thermally evolved and hydrogen gas released between 550° 950°C from samples Hesperian-era Gale crater smectite to determine this isotope ratio. D/H value is 3.0 (±0.2) times standard mean ocean water. ~3-billion-year-old mudstone, which half that present atmosphere but...

10.1126/science.1260291 article EN Science 2014-12-17
Coming Soon ...