B. Flaugher
- Galaxies: Formation, Evolution, Phenomena
- Particle physics theoretical and experimental studies
- High-Energy Particle Collisions Research
- Quantum Chromodynamics and Particle Interactions
- Astronomy and Astrophysical Research
- Gamma-ray bursts and supernovae
- Stellar, planetary, and galactic studies
- Cosmology and Gravitation Theories
- Dark Matter and Cosmic Phenomena
- CCD and CMOS Imaging Sensors
- Particle Detector Development and Performance
- Adaptive optics and wavefront sensing
- Astrophysics and Cosmic Phenomena
- Radio Astronomy Observations and Technology
- Astrophysical Phenomena and Observations
- Astrophysics and Star Formation Studies
- Astronomical Observations and Instrumentation
- Particle Accelerators and Free-Electron Lasers
- Pulsars and Gravitational Waves Research
- Astro and Planetary Science
- Calibration and Measurement Techniques
- Scientific Research and Discoveries
- Infrared Target Detection Methodologies
- Gaussian Processes and Bayesian Inference
- Computational Physics and Python Applications
Fermi National Accelerator Laboratory
2016-2025
California Institute of Technology
2024
Universidad Autónoma de Madrid
2024
Campbell Collaboration
2021
ETH Zurich
2019
University College London
2018
Instituto de Física de Cantabria
2000-2004
Universidad de Cantabria
2000-2004
Children's Defense Fund
1995-2004
Istituto Nazionale di Fisica Nucleare
1995-2000
DESI (Dark Energy Spectroscopic Instrument) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations (BAO) and the growth of structure through redshift-space distortions with wide-area galaxy quasar redshift survey. To trace underlying matter distribution, spectroscopic targets be selected in four classes from imaging data. We measure luminous red galaxies up to $z=1.0$. probe Universe out even higher redshift, target bright [O II] emission line $z=1.7$....
We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 deg$^2$ $griz$ imaging data the first year Dark Energy Survey (DES Y1). combine three two-point functions: (i) cosmic shear correlation function 26 million source galaxies in four redshift bins, (ii) angular autocorrelation 650,000 luminous red five (iii) galaxy-shear cross-correlation positions shears. To demonstrate robustness these results, we use independent pairs...
We present UV, optical, and NIR photometry of the first electromagnetic counterpart to a gravitational wave source from Advanced LIGO/Virgo, binary neutron star merger GW170817. Our data set extends discovery optical at $0.47$ days $18.5$ post-merger, includes observations with Dark Energy Camera (DECam), Gemini-South/FLAMINGOS-2 (GS/F2), {\it Hubble Space Telescope} ({\it HST}). The spectral energy distribution (SED) inferred this $0.6$ is well described by blackbody model $T\approx 8300$...
Abstract We describe the first public data release of Dark Energy Survey, DES DR1, consisting reduced single-epoch images, co-added source catalogs, and associated products services assembled over 3 yr science operations. DR1 is based on optical/near-infrared imaging from 345 distinct nights (2013 August to 2016 February) by Camera mounted 4 m Blanco telescope at Cerro Tololo Inter-American Observatory in Chile. wide-area survey covering ∼5000 deg 2 southern Galactic cap five broad...
We use 26×106 galaxies from the Dark Energy Survey (DES) Year 1 shape catalogs over 1321 deg2 of sky to produce most significant measurement cosmic shear in a galaxy survey date. constrain cosmological parameters both flat ΛCDM and wCDM models, while also varying neutrino mass density. These results are shown be robust using two independent catalogs, photo-z calibration methods, analysis pipelines blind analysis. find 3.5% fractional uncertainty on σ8(Ωm/0.3)0.5=0.782+0.027−0.027 at 68%...
The Dark Energy Camera is a new imager with 22 diameter field of view mounted at the prime focus Victor M. Blanco 4 m telescope on Cerro Tololo near La Serena, Chile. camera was designed and constructed by Survey Collaboration meets or exceeds stringent requirements for wide-field supernova surveys which collaboration uses it. consists five-element optical corrector, seven filters, shutter 60 cm aperture, charge-coupled device (CCD) focal plane 250 μm thick fully depleted CCDs cooled inside...
We report the discovery of eight new ultra-faint dwarf galaxy candidates in second year optical imaging data from Dark Energy Survey (DES). Six these are detected at high confidence, while two lower-confidence identified regions non-uniform survey coverage. The stellar systems found by three independent automated search techniques and as overdensities stars, consistent with isochrone luminosity function an old metal-poor simple population. faint (Mv > -4.7 mag) span a range physical sizes...
We present the science case, reference design, and project plan for Stage-4 ground-based cosmic microwave background experiment CMB-S4.
The Dark Energy Spectroscopic Instrument (DESI) is a massively multiplexed fiber-fed spectrograph that will make the next major advance in dark energy timeframe 2018-2022. On Mayall telescope, DESI obtain spectra and redshifts for at least 18 million emission-line galaxies, 4 luminous red galaxies 3 quasi-stellar objects, order to: probe effects of on expansion history using baryon acoustic oscillations (BAO), measure gravitational growth through redshift-space distortions, sum neutrino...
Dark Energy is the dominant constituent of universe and we have little understanding it. We describe a new project aimed at measuring dark energy equation state parameter, w, to statistical precision ~5% with four separate techniques. The survey will image 5000 deg 2 in southern sky collect 300 million galaxies, 30,000 galaxy clusters, 2000 Type Ia supernovae. be carried out using 3 mosaic camera mounted prime focus 4m Blanco telescope CTIO.
We report the discovery of eight new Milky Way companions in optical imaging data collected during first year Dark Energy Survey (DES). Each system is identified as a statistically significant over-density individual stars consistent with expected isochrone and luminosity function an old metal-poor stellar population. The objects span wide range absolute magnitudes (MV from to ), physical sizes (), heliocentric distances (). Based on low surface brightnesses, large sizes, and/or...
ABSTRACT We search for excess γ -ray emission coincident with the positions of confirmed and candidate Milky Way satellite galaxies using six years data from Fermi Large Area Telescope (LAT). Our sample 45 stellar systems includes 28 kinematically dark-matter-dominated dwarf spheroidal (dSphs) 17 recently discovered that have photometric characteristics consistent population known dSphs. For each these targets, relative predicted flux due to dark matter annihilation is taken kinematic...
ABSTRACT We describe updates to the redMaPPer algorithm, a photometric red-sequence cluster finder specifically designed for large surveys. The updated algorithm is applied of Science Verification (SV) data from Dark Energy Survey (DES), and Sloan Digital Sky (SDSS) DR8 set. DES SV catalog locally volume limited contains 786 clusters with richness (roughly equivalent ) . consists 26,311 , sharply increasing threshold as function redshift performance both catalogs shown be excellent,...
We combine Dark Energy Survey Year 1 clustering and weak lensing data with Baryon Acoustic Oscillations (BAO) Big Bang Nucleosynthesis (BBN) experiments to constrain the Hubble constant. Assuming a flat $\Lambda$CDM model minimal neutrino mass ($\sum m_\nu = 0.06$ eV) we find $H_0=67.2^{+1.2}_{-1.0}$ km/s/Mpc (68% CL). This result is completely independent of constant measurements based on distance ladder, Cosmic Microwave Background (CMB) anisotropies (both temperature polarization), strong...
We describe the creation, content, and validation of Dark Energy Survey (DES) internal year-one cosmology data set, Y1A1 GOLD, in support upcoming cosmological analyses. The GOLD set is assembled from multiple epochs DES imaging consists calibrated photometric zeropoints, object catalogs, ancillary products - e.g., maps survey depth observing conditions, star-galaxy classification, redshift estimates that are necessary for accurate wide-area catalog ~137 million objects detected coadded...
We perform a comprehensive study of Milky Way (MW) satellite galaxies to constrain the fundamental properties dark matter (DM). This analysis fully incorporates inhomogeneities in spatial distribution and detectability MW satellites marginalizes over uncertainties mapping between DM halos, system, disruption subhalos by disk. Our results are consistent with cold, collisionless paradigm yield strongest cosmological constraints date on particle models warm, interacting, fuzzy matter. At 95%...
DESI (Dark Energy Spectropic Instrument) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations and the growth of structure through redshift-space distortions with wide-area galaxy quasar redshift survey. The instrument robotically-actuated, fiber-fed spectrograph capable taking up to 5,000 simultaneous spectra over wavelength range from 360 nm 980 nm. fibers feed ten three-arm spectrographs resolution $R= λ/Δλ$ between 2000 5500, depending on...
We present an improved measurement of the Hubble constant (H_0) using 'inverse distance ladder' method, which adds information from 207 Type Ia supernovae (SNe Ia) Dark Energy Survey (DES) at redshift 0.018 < z 0.85 to existing measurements 122 low (z 0.07) SNe (Low-z) and Baryon Acoustic Oscillations (BAOs). Whereas traditional H_0 with use a ladder parallax Cepheid variable stars, inverse relies on absolute BAOs calibrate intrinsic magnitude Ia. find = 67.8 +/- 1.3 km s-1 Mpc-1...
Due to their proximity, high dark-matter content, and apparent absence of non-thermal processes, Milky Way dwarf spheroidal satellite galaxies (dSphs) are excellent targets for the indirect detection dark matter. Recently, eight new dSph candidates were discovered using first year data from Dark Energy Survey (DES). We searched gamma-ray emission coincident with positions these objects in six years Fermi Large Area Telescope data. found no significant excesses emission. Under assumption that...
We constrain the mass–richness scaling relation of redMaPPer galaxy clusters identified in Dark Energy Survey Year 1 data using weak gravitational lensing. split into 4 × 3 bins richness λ and redshift |$z$| for ≥ 20 0.2 ≤ 0.65 measure mean masses these their stacked lensing signal. By modelling as 〈M200m|λ, |$z$|〉 = M0(λ/40)F((1 + |$z$|)/1.35)G, we normalization at 5.0 per cent level, finding M0 [3.081 ± 0.075(stat) 0.133(sys)] · 1014 M⊙ 40 0.35. The recovered index is F 1.356 0.051 (stat)...
We present two galaxy shape catalogues from the Dark Energy Survey Year 1 data set, covering 1500 square degrees with a median redshift of $0.59$. The cover main fields: Stripe 82, and an area overlapping South Pole Telescope survey region. describe our analysis process in particular measurement using independent shear pipelines, METACALIBRATION IM3SHAPE. catalogue uses Gaussian model innovative internal calibration scheme, was applied to $riz$-bands, yielding 34.8M objects. IM3SHAPE...
We present constraints on extensions of the minimal cosmological models dominated by dark matter and energy, $\Lambda$CDM $w$CDM, using a combined analysis galaxy clustering weak gravitational lensing from first-year data Dark Energy Survey (DES Y1) in combination with external data. consider four energy-dominated scenarios: 1) nonzero curvature $\Omega_k$, 2) number relativistic species $N_{\rm eff}$ different standard value 3.046, 3) time-varying equation-of-state energy described...
ABSTRACT We present a blind time-delay cosmographic analysis for the lens system DES J0408−5354. This is extraordinary presence of two sets multiple images at different redshifts, which provide opportunity to obtain more information cost increased modelling complexity with respect previously analysed systems. perform detailed mass distribution this using three band Hubble Space Telescope imaging. combine measured time delays, line-of-sight central velocity dispersion deflector, and...
We describe the derivation and validation of redshift distribution estimates their uncertainties for populations galaxies used as weak-lensing sources in Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (bpz) code is to assign four bins between z ≈ 0.2 ≈1.3, produce initial lensing-weighted distributions |$n^i_{\rm PZ}(z)\propto \mathrm{d}n^i/\mathrm{d}z$| members bin i. Accurate determination parameters depends critically on knowledge ni, but...