T. F. Eifler
- Galaxies: Formation, Evolution, Phenomena
- Astronomy and Astrophysical Research
- Cosmology and Gravitation Theories
- Gamma-ray bursts and supernovae
- Stellar, planetary, and galactic studies
- Astrophysics and Cosmic Phenomena
- Adaptive optics and wavefront sensing
- Dark Matter and Cosmic Phenomena
- CCD and CMOS Imaging Sensors
- Radio Astronomy Observations and Technology
- Astronomical Observations and Instrumentation
- Statistical and numerical algorithms
- Astrophysical Phenomena and Observations
- Pulsars and Gravitational Waves Research
- Scientific Research and Discoveries
- Astrophysics and Star Formation Studies
- Calibration and Measurement Techniques
- Gaussian Processes and Bayesian Inference
- Remote Sensing in Agriculture
- Geophysics and Gravity Measurements
- Photocathodes and Microchannel Plates
- Astro and Planetary Science
- Advanced Measurement and Metrology Techniques
- History and Developments in Astronomy
- Planetary Science and Exploration
University of Arizona
2019-2025
California Institute of Technology
2015-2025
Jet Propulsion Laboratory
2015-2023
Astronomy and Space
2020
Kitt Peak National Observatory
2019
University of Pennsylvania
2013-2017
The Ohio State University
2010-2017
Fermi National Accelerator Laboratory
2016
Philadelphia University
2016
National Center for Supercomputing Applications
2016
(Abridged) We describe here the most ambitious survey currently planned in optical, Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST have unique capability faint time domain. The design is driven four main themes: probing dark energy matter, taking an inventory Solar System, exploring transient optical sky, mapping Milky Way. wide-field ground-based system sited at Cerro Pach\'{o}n northern Chile. telescope 8.4 m...
We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 deg$^2$ $griz$ imaging data the first year Dark Energy Survey (DES Y1). combine three two-point functions: (i) cosmic shear correlation function 26 million source galaxies in four redshift bins, (ii) angular autocorrelation 650,000 luminous red five (iii) galaxy-shear cross-correlation positions shears. To demonstrate robustness these results, we use independent pairs...
We present the first cosmology results from large-scale structure in Dark Energy Survey (DES) spanning 5000 deg$^2$. perform an analysis combining three two-point correlation functions (3$\times$2pt): (i) cosmic shear using 100 million source galaxies, (ii) galaxy clustering, and (iii) cross-correlation of with lens positions. The was designed to mitigate confirmation or observer bias; we describe specific changes made sample following unblinding results. model data within flat $\Lambda$CDM...
Abstract We describe the first public data release of Dark Energy Survey, DES DR1, consisting reduced single-epoch images, co-added source catalogs, and associated products services assembled over 3 yr science operations. DR1 is based on optical/near-infrared imaging from 345 distinct nights (2013 August to 2016 February) by Camera mounted 4 m Blanco telescope at Cerro Tololo Inter-American Observatory in Chile. wide-area survey covering ∼5000 deg 2 southern Galactic cap five broad...
We use 26×106 galaxies from the Dark Energy Survey (DES) Year 1 shape catalogs over 1321 deg2 of sky to produce most significant measurement cosmic shear in a galaxy survey date. constrain cosmological parameters both flat ΛCDM and wCDM models, while also varying neutrino mass density. These results are shown be robust using two independent catalogs, photo-z calibration methods, analysis pipelines blind analysis. find 3.5% fractional uncertainty on σ8(Ωm/0.3)0.5=0.782+0.027−0.027 at 68%...
Abstract We present the Dark Energy Camera (DECam) discovery of optical counterpart first binary neutron star merger detected through gravitational-wave emission, GW170817. Our observations commenced 10.5 hr post-merger, as soon localization region became accessible from Chile. imaged 70 deg 2 in i and z bands, covering 93% initial integrated probability, to a depth necessary identify likely counterparts (e.g., kilonova). At 11.4 post-merger we bright transient located nucleus NGC 4993 at...
We report the discovery of eight new ultra-faint dwarf galaxy candidates in second year optical imaging data from Dark Energy Survey (DES). Six these are detected at high confidence, while two lower-confidence identified regions non-uniform survey coverage. The stellar systems found by three independent automated search techniques and as overdensities stars, consistent with isochrone luminosity function an old metal-poor simple population. faint (Mv > -4.7 mag) span a range physical sizes...
We report the discovery of eight new Milky Way companions in optical imaging data collected during first year Dark Energy Survey (DES). Each system is identified as a statistically significant over-density individual stars consistent with expected isochrone and luminosity function an old metal-poor stellar population. The objects span wide range absolute magnitudes (MV from to ), physical sizes (), heliocentric distances (). Based on low surface brightnesses, large sizes, and/or...
ABSTRACT We search for excess γ -ray emission coincident with the positions of confirmed and candidate Milky Way satellite galaxies using six years data from Fermi Large Area Telescope (LAT). Our sample 45 stellar systems includes 28 kinematically dark-matter-dominated dwarf spheroidal (dSphs) 17 recently discovered that have photometric characteristics consistent population known dSphs. For each these targets, relative predicted flux due to dark matter annihilation is taken kinematic...
We present a tomographic cosmological weak lensing analysis of the HST COSMOS Survey. Applying our lensing-optimized data reduction, principal component interpolation for ACS PSF, and improved modelling charge-transfer inefficiency, we measure signal which is consistent with pure gravitational modes no significant shape systematics. carefully estimate statistical uncertainty from simulated COSMOS-like fields obtained ray-tracing through Millennium Simulation. test pipeline on space-based...
This work and its companion paper, Amon et al. (2021), present cosmic shear measurements cosmological constraints from over 100 million source galaxies in the Dark Energy Survey (DES) Year 3 data. We constrain lensing amplitude parameter $S_8\equiv\sigma_8\sqrt{\Omega_\textrm{m}/0.3}$ at 3% level $\Lambda$CDM: $S_8=0.759^{+0.025}_{-0.023}$ (68% CL). Our constraint is 2% when using angular scale cuts that are optimized for $\Lambda$CDM analysis: $S_8=0.772^{+0.018}_{-0.017}$ With alone, we...
We explore strategies to extract cosmological constraints from a joint analysis of cosmic shear, galaxy-galaxy lensing, galaxy clustering, cluster number counts and weak lensing. utilize the CosmoLike software simulate results an LSST like data set, specifically, we 1) compare individual analyses different probes, 2) vary selection criteria for lens source galaxies, 3) investigate impact blending, 4) assumed model in multi-probe covariances, 6) quantify information content as function...
We present an improved measurement of the Hubble constant (H_0) using 'inverse distance ladder' method, which adds information from 207 Type Ia supernovae (SNe Ia) Dark Energy Survey (DES) at redshift 0.018 < z 0.85 to existing measurements 122 low (z 0.07) SNe (Low-z) and Baryon Acoustic Oscillations (BAOs). Whereas traditional H_0 with use a ladder parallax Cepheid variable stars, inverse relies on absolute BAOs calibrate intrinsic magnitude Ia. find = 67.8 +/- 1.3 km s-1 Mpc-1...
Due to their proximity, high dark-matter content, and apparent absence of non-thermal processes, Milky Way dwarf spheroidal satellite galaxies (dSphs) are excellent targets for the indirect detection dark matter. Recently, eight new dSph candidates were discovered using first year data from Dark Energy Survey (DES). We searched gamma-ray emission coincident with positions these objects in six years Fermi Large Area Telescope data. found no significant excesses emission. Under assumption that...
We present two galaxy shape catalogues from the Dark Energy Survey Year 1 data set, covering 1500 square degrees with a median redshift of $0.59$. The cover main fields: Stripe 82, and an area overlapping South Pole Telescope survey region. describe our analysis process in particular measurement using independent shear pipelines, METACALIBRATION IM3SHAPE. catalogue uses Gaussian model innovative internal calibration scheme, was applied to $riz$-bands, yielding 34.8M objects. IM3SHAPE...
We describe the derivation and validation of redshift distribution estimates their uncertainties for populations galaxies used as weak-lensing sources in Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (bpz) code is to assign four bins between z ≈ 0.2 ≈1.3, produce initial lensing-weighted distributions |$n^i_{\rm PZ}(z)\propto \mathrm{d}n^i/\mathrm{d}z$| members bin i. Accurate determination parameters depends critically on knowledge ni, but...
We present the first constraints on cosmology from Dark Energy Survey (DES), using weak lensing measurements preliminary Science Verification (SV) data. use 139 square degrees of SV data, which is less than 3% full DES survey area. Using cosmic shear 2-point over three redshift bins we find ${\ensuremath{\sigma}}_{8}({\mathrm{\ensuremath{\Omega}}}_{\mathrm{m}}/0.3{)}^{0.5}=0.81\ifmmode\pm\else\textpm\fi{}0.06$ (68% confidence), after marginalizing 7 systematics parameters and 3 other...
We introduce redMaGiC, an automated algorithm for selecting Luminous Red Galaxies (LRGs). The was specifically developed to minimize photometric redshift uncertainties in large-scale structure studies. redMaGiC achieves this by self-training the color-cuts necessary produce a luminosity-thresholded LRG sample of constant comoving density. demonstrate that photozs are very nearly as accurate best machine-learning based methods, yet they require minimal spectroscopic training, do not suffer...
We present weak lensing shear catalogues for 139 square degrees of data taken during the Science Verification (SV) time new Dark Energy Camera (DECam) being used Survey (DES). describe our object selection, point spread function estimation and measurement procedures using two independent pipelines, im3shape ngmix, which produce 2.12 million 3.44 galaxies, respectively. detail a set null tests measurements find that they pass requirements systematic errors at level necessary science...
ABSTRACT We present angular diameter distance measurements obtained by locating the baryon acoustic oscillations (BAO) scale in distribution of galaxies selected from first year Dark Energy Survey data. consider a sample over 1.3 million distributed footprint 1336 deg2 with 0.6 < $z$photo 1 and typical redshift uncertainty 0.03(1 + $z$). This was selected, as fully described companion paper, using colour/magnitude selection that optimizes trade-offs between number density uncertainty....
Abstract We report the results of a systematic search for ultra-faint Milky Way satellite galaxies using data from Dark Energy Survey (DES) and Pan-STARRS1 (PS1). Together, DES PS1 provide multi-band photometry in optical/near-infrared wavelengths over ∼80% sky. Our targets ∼25,000 deg 2 high-Galactic-latitude sky reaching 10 σ point-source depth ≳22.5 mag g r bands. While galaxy searches have been performed independently on before, this is first time that self-consistent across both sets....
The authors use Dark Energy Survey data on galaxy clustering and lensing from the first three years of observations combined with five prominent external datasets. They robustly constrain six potential extensions to currently prevalent cosmological paradigm \ensuremath{\Lambda}CDM (Cold Matter a constant). All would add significant new physics, such as deviations General Relativity or non-zero spatial curvature, but no evidence for physics is found.
We present photometric redshift estimates for galaxies used in the weak lensing analysis of Dark Energy Survey Science Verification (DES SV) data. Four model- or machine learning-based methods -- ANNZ2, BPZ calibrated against BCC-Ufig simulations, SkyNet, and TPZ are analysed. For training, calibration, testing these methods, we construct a catalogue spectroscopically confirmed matched DES SV The performance is evaluated spectroscopic catalogue, focusing on metrics relevant analyses, with...
Abstract We present Magellan /IMACS spectroscopy of the recently discovered Milky Way satellite Eridanus II (Eri II). identify 28 member stars in Eri II, from which we measure a systemic radial velocity and dispersion . Assuming that is dispersion-supported system dynamical equilibrium, derive mass within half-light radius , indicating mass-to-light ratio / confirming it dark matter-dominated dwarf galaxy. From equivalent width measurements Ca triplet lines 16 red giant stars, mean...
In this paper, we present results from the weak-lensing shape measurement GRavitational lEnsing Accuracy Testing 2010 (GREAT10) Galaxy Challenge. This marks an order of magnitude step change in level scrutiny employed analysis. We provide descriptions each method tested and include 10 evaluation metrics over 24 simulation branches.