- Laser-Plasma Interactions and Diagnostics
- Particle Accelerators and Free-Electron Lasers
- Magnetic confinement fusion research
- Particle accelerators and beam dynamics
- Laser-Matter Interactions and Applications
- Particle physics theoretical and experimental studies
- Particle Detector Development and Performance
- Atomic and Molecular Physics
- Ionosphere and magnetosphere dynamics
- Solar and Space Plasma Dynamics
- Advanced Chemical Physics Studies
- Structural Health Monitoring Techniques
- Astrophysics and Cosmic Phenomena
- Advanced Fiber Laser Technologies
- bioluminescence and chemiluminescence research
- Chemical and Physical Properties of Materials
- Laser Design and Applications
- Plasma and Flow Control in Aerodynamics
- Plasma Diagnostics and Applications
- Quantum optics and atomic interactions
- Photocathodes and Microchannel Plates
- Radiation Therapy and Dosimetry
- Optics and Image Analysis
- Structural Integrity and Reliability Analysis
- Photorefractive and Nonlinear Optics
Max Planck Institute for Physics
2017-2022
Campbell Collaboration
2020-2022
Max Planck Society
2019
Google (United States)
2019
Technical University of Munich
2018
TRIUMF
2017
University College London
2016
High energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles and the forces that govern their interactions. In order to increase or reduce size accelerator, new acceleration schemes need be developed. Plasma wakefield acceleration, which electrons plasma are excited, leading strong electric fields, is one such promising novel technique. Pioneering experiments shown an intense laser pulse electron bunch traversing plasma, drives fields 10s...
The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment CERN the world׳s first experiment. AWAKE will be installed in former CNGS facility uses 400 GeV/c beam bunches from SPS. experiments focus on self-modulation instability of long (rms ~12 cm) bunch plasma. These are planned for end 2016. Later, 2017/2018, low energy (~15 MeV)...
We give direct experimental evidence for the observation of full transverse self-modulation a long, relativistic proton bunch propagating through dense plasma. The exits plasma with periodic density modulation resulting from radial wakefield effects. show that is seeded by ionization front created using an intense laser pulse copropagating bunch. extends over length following seed point. By varying one order magnitude, we frequency scales expected dependence on density, i.e., it equal to...
The seeded self-modulation of a relativistic, charged particle bunch in plasma is shown to grow both along the and plasma, resulting transverse wakefield amplitudes that far exceed initial seed values.
AWAKE is a proton-driven plasma wakefield acceleration experiment. % We show that the experimental setup briefly described here ready for systematic study of seeded self-modulation 400\,GeV proton bunch in 10\,m-long rubidium with density adjustable from 1 to 10$\times10^{14}$\,cm$^{-3}$. short laser pulse used ionization vapor propagates all way along column, suggesting full vapor. occurs bunch, at time and follows affects bunch.
Plasma wakefield acceleration is a promising technology to reduce the size of particle accelerators. The use high energy protons drive wakefields in plasma has been demonstrated during Run 1 AWAKE programme at CERN. Protons 400 GeV drove that accelerated electrons 2 under 10 m plasma. collaboration now embarking on with main aims demonstrate stable accelerating gradients 0.5–1 GV/m, preserve emittance electron bunches and develop sources scalable 100s metres beyond. By end 2, scheme should...
A long, narrow, relativistic charged particle bunch propagating in plasma is subject to the self-modulation (SM) instability. We show that SM of a proton can be seeded by wakefields driven preceding electron bunch. timing reproducibility and control are at level small fraction modulation period. With this seeding method, we independently amplitude seed with charge growth rate Seeding leads larger than instability case.
We use a relativistic ionization front to provide various initial transverse wakefield amplitudes for the self-modulation of long proton bunch in plasma. show experimentally that, with sufficient amplitude [$\ensuremath{\ge}(4.1\ifmmode\pm\else\textpm\fi{}0.4)\text{ }\text{ }\mathrm{MV}/\mathrm{m}$], phase modulation along is reproducible from event event, 3%--7% (of $2\ensuremath{\pi}$) rms variations all bunch. The not lower amplitudes. observe transition between these two regimes. Phase...
We study experimentally the longitudinal and transverse wakefields driven by a highly relativistic proton bunch during self-modulation in plasma. show that wakefields' growth amplitude increase with increasing seed as well charge using maximum radius of distribution measured on screen downstream from externally injecting electrons measuring their final energy. Measurements agree trends predicted theory numerical simulations validate our understanding development self-modulation. Experiments...
Abstract In 2017, AWAKE demonstrated the seeded self-modulation (SSM) of a 400 GeV proton beam from Super Proton Synchrotron at CERN. The angular distribution protons deflected due to SSM is quantitative measure process, which agrees with simulations by two-dimensional (axisymmetric) particle-in-cell code LCODE about 5%. agreement achieved in population scans two selected plasma densities and scan longitudinal density gradient. reached only case wide enough simulation box (several...
In this article, we briefly summarize the experiments performed during first Run of Advanced Wakefield Experiment, AWAKE, at CERN (European Organization for Nuclear Research). The final goal AWAKE 1 (2013 - 2018) was to demonstrate that \unit[10-20]{MeV} electrons can be accelerated GeV-energies in a plasma wakefield driven by highly-relativistic self-modulated proton bunch. We describe experiment, outline measurement concept and present results. Last, our plans future.
We study experimentally the effect of linear plasma density gradients on self-modulation a 400\,GeV proton bunch. Results show that positive/negative gradient in/decreases number micro-bunches and relative charge per micro-bunch observed after 10\,m plasma. The measured modulation frequency also in/decreases. With largest positive we observe two frequencies in power spectrum. are consistent with changes wakefields' phase velocity due to adding slow during growth predicted by theory.
Abstract We briefly compare in numerical simulations the relativistic ionization front and electron bunch seeding of self-modulation a proton plasma. When parameters are such that initial wakefields equal with two methods, evolution maximum longitudinal along plasma is similar. also propose possible seeding/injection scheme using single we will study upcoming works.
We study the propagation of 0.05-1 TW power, ultrafast laser pulses in a 10 meter long rubidium vapor cell. The central wavelength is resonant with $D_2$ line and peak intensity $10^{12}-10^{14} ~W/cm^2$ range, enough to create plasma channel single electron ionization. observe absorption pulse for low energy, regime transverse confinement beam by strong nonlinearity higher energies broadening output when saturated due full medium compare experimental observations transmitted energy fluence...
In plasma wakefield accelerators (e.g. AWAKE) the proton bunch self-modulation is seeded by ionization front of a high-power laser pulse ionizing vapour and resulting steep edge driving profile inside created plasma. this paper, we present calculations in 2D linear theory for concept different seeding mechanism based on electron injection. The whole propagates through preformed effective beam current modulated external injection short at centre beam. sharp trailing part large wakefields that...
Plasma wakefield dynamics over timescales up to 800 ps, approximately 100 plasma periods, are studied experimentally at the Advanced Wakefield Experiment (AWAKE). The development of longitudinal amplitude driven by a self-modulated proton bunch is measured using external injection witness electrons that sample fields. In simulation, resonant excitation causes electron trajectory crossing, resulting in potential outside boundary as transversely ejected. Trends consistent with presence this...
We present numerical simulations and experimental results of the self-modulation a long proton bunch in plasma with linear density gradients along beam path. Simulation agree reported [F. Braunmller, T. Nechaeva et al. (AWAKE Collaboration), Phys. Rev. Lett. 125, 264801 (2020)]: negative gradients, charge modulated is lower than positive gradients. In addition, modulation frequency varies gradient. show that dephasing wakefields respect to relativistic protons main cause for loss charge. The...
In 2017, AWAKE demonstrated the seeded self-modulation (SSM) of a 400 GeV proton beam from Super Proton Synchrotron (SPS) at CERN. The angular distribution protons deflected due to SSM is quantitative measure process, which agrees with simulations by two-dimensional (axisymmetric) particle-in-cell code LCODE. Agreement achieved for populations between $10^{11}$ and $3 \times 10^{11}$ particles, various plasma density gradients ($-20 \div 20\%$) two densities ($2\times 10^{14} \text{cm}^{-3}$...
A precise characterization of the incoming proton bunch parameters is required to accurately simulate self-modulation process in Advanced Wakefield Experiment (AWAKE). This paper presents an analysis bunches used later stages AWAKE Run 1 data-taking period. The transverse structure observed at multiple positions along beamline using scintillating or optical transition radiation screens. a model that describes dimensions and divergence are fitted represent data Bayesian inference. tested on...