Treçy Gonçalves

ORCID: 0000-0001-5469-443X
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Cardiac Imaging and Diagnostics
  • Cardiovascular Function and Risk Factors
  • Advanced MRI Techniques and Applications
  • Artificial Intelligence in Healthcare
  • Cardiac pacing and defibrillation studies
  • Cardiovascular Disease and Adiposity
  • Advanced X-ray and CT Imaging
  • Opioid Use Disorder Treatment
  • Coronary Interventions and Diagnostics
  • Atrial Fibrillation Management and Outcomes
  • Cardiac Structural Anomalies and Repair
  • Cardiac Valve Diseases and Treatments
  • Forensic Toxicology and Drug Analysis
  • Substance Abuse Treatment and Outcomes
  • Cardiomyopathy and Myosin Studies
  • Advanced Statistical Process Monitoring
  • Semiconductor materials and devices
  • Acute Myocardial Infarction Research
  • Cardiac tumors and thrombi
  • Machine Learning and Algorithms
  • Radiomics and Machine Learning in Medical Imaging
  • Pharmaceutical Practices and Patient Outcomes
  • Advancements in Semiconductor Devices and Circuit Design
  • Cardiac electrophysiology and arrhythmias
  • Pharmaceutical Economics and Policy

Inserm
2023-2025

Université Paris Cité
2023-2025

Assistance Publique – Hôpitaux de Paris
2023-2025

Hôpital américain de paris
2025

Institut Cardiovasculaire Paris Sud
2024-2025

Hôpital Privé Jacques Cartier
2024-2025

Siemens (France)
2025

Hôpital Lariboisière
2023-2025

Marqueurs cardiovasculaires en situation de stress
2024-2025

Centre Hospitalier Régional et Universitaire de Nancy
2021

Background Multimodality imaging is essential for personalized prognostic stratification in suspected coronary artery disease (CAD). Machine learning (ML) methods can help address this complexity by incorporating a broader spectrum of variables. Purpose To investigate the performance an ML model that uses both stress cardiac MRI and CT angiography (CCTA) data to predict major adverse cardiovascular events (MACE) patients with newly diagnosed CAD. Materials Methods This retrospective study...

10.1148/radiol.233030 article EN Radiology 2025-01-01

Abstract Aims This study aimed to determine in patients undergoing stress cardiovascular magnetic resonance (CMR) whether fully automated artificial intelligence (AI)-based left ventricular ejection fraction (LVEFAI) can provide incremental prognostic value predict death above traditional prognosticators. Methods and results Between 2016 2018, we conducted a longitudinal that included all consecutive referred for vasodilator CMR. LVEFAI was assessed using AI algorithm combines multiple deep...

10.1093/ehjci/jeae168 article EN European Heart Journal - Cardiovascular Imaging 2024-07-08

While few traditional scores are available for risk stratification of patients hospitalized acute heart failure (AHF), the potential benefit machine learning (ML) is not well established. We aimed to assess feasibility and accuracy a supervised ML model including environmental factors predict in-hospital major adverse events (MAEs) in AHF. In April 2021, French national prospective multicentre study included all consecutive intensive cardiac care unit. Patients admitted AHF were analyses. A...

10.1093/ehjdh/ztae094 article EN cc-by-nc European Heart Journal - Digital Health 2024-12-16
Orianne Weizman Kenza Hamzi Patrick Henry Guillaume Schurtz Marie Hauguel Moreau and 95 more Antonin Trimaille Marc Bédossa Jean-Claude Dib Sabir Attou Tanissia Boukertouta Franck Boccara Thibaut Pommier Pascal Lim Thomas Bochaton Damien Millischer Benoît Mérat Fabien Picard Nissim Grinberg David Sulman Bastien Pasdeloup Yassine El Ouahidi Treçy Gonçalves Éric Vicaut Jean‐Guillaume Dillinger Solenn Toupin Théo Pezel Victor Aboyans Emeric Albert Franck Albert Sean Alvain Nabil Amri S. Andrieu Sabir Attou Simon Auvray Sonia Azzakani Ruben Azencot Marc Bédossa Franck Boccara Claude Boccara Thomas Bochaton Eric Bonnefoy‐Cudraz Guillaume Bonnet Guillaume Bonnet Nabil Bouali Océane Bouchot Claire Bouleti Tanissia Boukertouta Jean Baptiste Brette Marjorie Canu Aurès Chaïb C. Charbonnel Anne Solene Chaussade Alexandre Coppens Yves Cottin Arthur Darmon Elena De Angelis Clément Delmas Laura Delsarte Antoine Deney Jean Claude Dib Jean‐Guillaume Dillinger Clémence Docq Valentin Dupasquier Meyer Elbaz Antony El Hadad Amine El Ouahidi Nacim Ezzouhairi Julien Fabre Damien Fard Charles Fauvel Édouard Gerbaud Martine Gilard Marc Goralski Nissim Grinberg Alain Grentzinger Marie Hauguel Moreau Patrick Henry Fabien Huet Thomas Landemaine Benoît Lattuca Léo Lemarchand Thomas Levasseur Pascal Lim Laura Maitre Ballesteros Nicolas Mansencal B. De Sainte Marie D. Rodríguez Martínez Benoît Mérat Christophe Meune Damien Millischer Thomas Moine Pascal Nhan Nathalie Noirclerc Patrick Ohlmann Théo Pezel Fabien Picard Nicolas Piliero Thibaut Pommier Étienne Puymirat Arthur Ramonatxo

Although some scores based on traditional statistical methods are available for risk stratification in patients hospitalized cardiac intensive care units (CICUs), the interest of machine learning (ML) this field is not well established. We aimed to build an ML model predict in-hospital major adverse events (MAE) CICU. In April 2021, a French national prospective multicentre study involving 39 centres included all consecutive admitted The primary outcome was MAE, including death, resuscitated...

10.1093/ehjdh/ztae098 article EN cc-by-nc European Heart Journal - Digital Health 2024-12-20

10.1016/j.jocmr.2024.100041 article EN cc-by-nc-nd Journal of Cardiovascular Magnetic Resonance 2024-01-01
Coming Soon ...