E. Ferrer-Ribas
- Particle Detector Development and Performance
- Dark Matter and Cosmic Phenomena
- Radiation Detection and Scintillator Technologies
- Particle physics theoretical and experimental studies
- Atomic and Subatomic Physics Research
- Astrophysics and Cosmic Phenomena
- Neutrino Physics Research
- CCD and CMOS Imaging Sensors
- Photocathodes and Microchannel Plates
- Cosmology and Gravitation Theories
- Nuclear Physics and Applications
- Plasma Diagnostics and Applications
- Solar and Space Plasma Dynamics
- Muon and positron interactions and applications
- Silicon Carbide Semiconductor Technologies
- Scientific Research and Discoveries
- Quantum Chromodynamics and Particle Interactions
- Astronomy and Astrophysical Research
- Chemical Reactions and Isotopes
- Distributed and Parallel Computing Systems
- Radiation Effects in Electronics
- Quantum, superfluid, helium dynamics
- Spectroscopy and Laser Applications
- Superconducting and THz Device Technology
- Age of Information Optimization
CEA Paris-Saclay
2016-2025
Institut de Recherche sur les Lois Fondamentales de l'Univers
2016-2025
Commissariat à l'Énergie Atomique et aux Énergies Alternatives
2016-2025
Université Paris-Saclay
2016-2024
Universitat de Barcelona
2022
DTU Space
2016
Technical University of Denmark
2016
Istituto Nazionale di Fisica Nucleare, Sezione di Napoli
2016
Centro Universitario de la Defensa
2015
Universidad de Zaragoza
2015
Hypothetical low-mass particles, such as axions, provide a compelling explanation for the dark matter in universe. Such particles are expected to emerge abundantly from hot interior of stars. To test this prediction, CERN Axion Solar Telescope (CAST) uses 9 T refurbished Large Hadron Collider magnet directed towards Sun. In strong magnetic field, solar axions can be converted X-ray photons which recorded by detectors. 2013–2015 run, thanks low-background detectors and new telescope,...
We have searched for solar axions or similar particles that couple to two photons by using the CERN Axion Solar Telescope (CAST) setup with improved conditions in all detectors. From absence of excess X-rays when magnet was pointing Sun, we set an upper limit on axion-photon coupling 8.8 x 10^{-11} GeV^{-1} at 95% CL m_a <~ 0.02 eV. This result is best experimental over a broad range axion masses and eV also supersedes previous derived from energy-loss arguments globular-cluster stars.
The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO look for axions or axion-like particles (ALPs) originating in the Sun via Primakoff conversion of solar plasma photons. In terms signal-to-noise ratio, about 4–5 orders magnitude more sensitive than CAST, currently most powerful helioscope, reaching sensitivity to axion-photon couplings down few × 10−12 GeV−1 and thus probing large fraction unexplored ALP parameter space....
We have searched for solar axions or other pseudoscalar particles that couple to two photons by using the CERN Axion Solar Telescope (CAST) setup. Whereas we previously reported results from CAST with evacuated magnet bores (Phase I), setting limits on lower mass axions, here report where were filled 4He gas II) of variable pressure. The introduction generates a refractive photon mγ, thereby achieving maximum possible conversion rate those axion masses ma match mγ. With 160 different...
The CERN Axion Solar Telescope (CAST) has extended its search for solar axions by using 3He as a buffer gas. At T=1.8 K this allows larger pressure settings and hence sensitivity to higher axion masses than our previous measurements with 4He. With about 1 h of data taking at each 252 different we have scanned the mass range 0.39 eV < m_a 0.64 eV. From absence excess X-rays when magnet was pointing Sun set typical upper limit on axion-photon coupling g_ag 2.3 x 10^{-10} GeV^{-1} 95% CL, exact...
We study the feasibility of a new generation axion helioscope, most ambitious and promising detector solar axions to date. show that large improvements in magnetic field volume, x-ray focusing optics backgrounds are possible beyond those achieved CERN Axion Solar Telescope (CAST). For hadronic models, sensitivity axion-photon coupling gaγ ≳ few × 10−12 GeV−1 is conceivable, 1–1.5 orders magnitude CAST sensitivity. If also couple electrons, Sun produces larger flux for same value Peccei-Quinn...
A new Micromegas manufacturing technique, based on kapton etching technology, has been developed recently, resulting in further improvement of the characteristics detector, such as uniformity and stability. Excellent energy resolution obtained, reaching 11% FWHM for 5.9 keV photon peak the55Fe X-ray source 1.8% (with possible evidence less than 1%) 5.5 MeV alpha 241Am source. The Microbulk detector shows several advantages like flexible structure, low material high radio-purity, opening thus...
The CERN Axion Solar Telescope has finished its search for solar axions with (3)He buffer gas, covering the range 0.64 eV ≲ ma 1.17 eV. This closes gap to cosmological hot dark matter limit and actually overlaps it. From absence of excess x rays when magnet was pointing Sun we set a typical upper on axion-photon coupling gaγ 3.3 × 10(-10) GeV(-1) at 95% C.L., exact value depending pressure setting. Future direct axion searches will focus increasing sensitivity smaller values gaγ, example by...
We review the physics potential of a next generation search for solar axions: International Axion Observatory (IAXO) . Endowed with sensitivity to discover axion-like particles (ALPs) coupling photons as small gaγ∼ 10−12 GeV−1, or electrons gae∼10−13, IAXO has find QCD axion in 1 meV∼1 eV mass range where it solves strong CP problem, can account cold dark matter Universe and be responsible anomalous cooling observed number stellar systems. At same time, will have enough detect lower axions...
A bstract This article describes BabyIAXO, an intermediate experimental stage of the International Axion Observatory (IAXO), proposed to be sited at DESY. IAXO is a large-scale axion helioscope that will look for axions and axion-like particles (ALPs), produced in Sun, with unprecedented sensitivity. BabyIAXO conceived test all subsystems (magnet, optics detectors) relevant scale final system thus serve as prototype IAXO, but same time fully-fledged physics reach itself, potential discovery....
In this Technical Design Report (TDR) we describe the NEXT-100 detector that will search for neutrinoless double beta decay (ββ0ν) in 136XE at Laboratorio Subterráneo de Canfranc (LSC), Spain. The document formalizes design presented our Conceptual (CDR): an electroluminescence time projection chamber, with separate readout planes calorimetry and tracking, located, respectively, behind cathode anode. is designed to hold a maximum of about 150 kg xenon 15 bar, or 100 10 bar. This option...
In non-hadronic axion models, which have a tree-level axion-electron interaction, the Sun produces strong flux by bremsstrahlung, Compton scattering, and axio-recombination, ``BCA processes.'' Based on new calculation of this flux, including for first time we derive limits Yukawa coupling gae axion-photon interaction strength gaγ using CAST phase-I data (vacuum phase). For ma≲10 meV/c2 find < 8.1 × 10−23 GeV−1 at 95% CL. We stress that next-generation helioscope such as proposed IAXO could...
The CERN Axion Solar Telescope (CAST) searches for $a\ensuremath{\rightarrow}\ensuremath{\gamma}$ conversion in the 9 T magnetic field of a refurbished LHC test magnet that can be directed toward Sun. Two parallel bores filled with helium adjustable pressure to match x-ray refractive mass ${m}_{\ensuremath{\gamma}}$ axion search ${m}_{a}$. After vacuum phase (2003--2004), which is optimal ${m}_{a}\ensuremath{\lesssim}0.02\text{ }\text{ }\mathrm{eV}$, we used $^{4}\mathrm{He}$ 2005--2007...
A low-background Micromegas detector has been operating in the CAST experiment at CERN for search solar axions during first phase of (2002–2004). The detector, made out low radioactivity materials, operated efficiently and achieved a very high level background rejection (5 × 10−5 counts keV−1 cm−2 s−1) without shielding.
We have searched for 14.4 keV solar axions or more general axion-like particles (ALPs), that may be emitted in the M1 nuclear transition of 57Fe, by using axion-to-photon conversion CERN Axion Solar Telescope (CAST) with evacuated magnet bores (Phase I). From absence excess monoenergetic X-rays when was pointing to Sun, we set model-independent constraints on coupling constants pseudoscalar couple two photons and a nucleon gaγ|−1.19gaN0+gaN3| < 1.36 × 10−16 GeV−1 ma 0.03 eV at 95% confidence level.
We propose an EASY (Electroluminescent ApparatuS of high Yield) and SOFT (Separated Optimized FuncTion) time-projection chamber for the NEXT experiment, that will search neutrinoless double beta decay (bb0nu) in Xe-136. Our experiment must be competitive with new generation bb0nu searches already operation or construction. This requires a detector very good energy resolution (<1%), low background con- tamination (1E-4 counts/(keV \bullet kg y)) large target mass. In addition, it needs to...
In this work we present a search for (solar) chameleons with the CERN Axion Solar Telescope (CAST). This novel experimental technique, in field of dark energy research, exploits both chameleon coupling to matter (βm) and photons (βγ) via Primakoff effect. By reducing X-ray detection threshold used axions from 1 keV 400 eV CAST became sensitive converted solar spectrum which peaks around 600 eV. Even though have not observed any excess above background, can provide 95% C.L. limit strength...
We report on the design, construction and operation of a low background x-ray detection line composed shielded Micromegas detector microbulk technology. The is made from radiopure materials placed at focal point ∼ 5 cm diameter, 1.5 m focal-length, cone-approximation Wolter I telescope (XRT) assembled thermally-formed (or "slumped") glass substrates deposited with multilayer coatings. system has been conceived as technological pathfinder for future International Axion Observatory (IAXO), it...
We report the performance of a 10 atm Xenon/trimethylamine time projection chamber (TPC) for detection X-rays (30 keV) and γ-rays (0.511–1.275 MeV) in conjunction with accurate tracking associated electrons. When operated at such high pressure ~1%-admixtures, trimethylamine (TMA) endows Xenon an extremely low electron diffusion (1.3±0.13mm-σ (longitudinal), 0.95±0.20mm-σ (transverse) along 1 m drift) besides forming convenient 'Penning-Fluorescent' mixture. The TPC, that houses 1.1 kg gas...
We propose a novel detection concept for neutrinoless double-beta decay searches. This is based on Time Projection Chamber (TPC) filled with high-pressure gaseous xenon, and separated-function capabilities calorimetry tracking. Thanks to its excellent energy resolution, together powerful background rejection provided by the distinct topological signature, design discussed in this Letter Of Intent promises be competitive possibly out-perform existing proposals next-generation experiments....
In this work we present a systematic study of Micromegas detectors in high pressure gaseous Xenon using trimethylamine (TMA) as quencher gas. Gas gains and energy resolutions for 22.1 keV X-rays are measured pressures between 1 10 bar various relative concentrations TMA from 0.3 % to 15 %. We observe stable operation at all pressures, strongly enhanced gas gain, suggestive Penning-like energy-transfer processes. The effect is it strongest ranging 1.5 3 Operating concentration range, the...