M. Pallavicini
- Neutrino Physics Research
- Particle physics theoretical and experimental studies
- Dark Matter and Cosmic Phenomena
- Astrophysics and Cosmic Phenomena
- Atomic and Subatomic Physics Research
- Quantum Chromodynamics and Particle Interactions
- Particle Detector Development and Performance
- Radiation Detection and Scintillator Technologies
- High-Energy Particle Collisions Research
- Nuclear physics research studies
- Atmospheric Ozone and Climate
- Nuclear Physics and Applications
- Superconducting Materials and Applications
- CCD and CMOS Imaging Sensors
- Solar and Space Plasma Dynamics
- Particle accelerators and beam dynamics
- Atomic and Molecular Physics
- Quantum, superfluid, helium dynamics
- Particle Accelerators and Free-Electron Lasers
- Advanced NMR Techniques and Applications
- Cosmology and Gravitation Theories
- Photocathodes and Microchannel Plates
- Muon and positron interactions and applications
- Gamma-ray bursts and supernovae
- Scientific Research and Discoveries
Istituto Nazionale di Fisica Nucleare, Sezione di Genova
2015-2024
Genoa (Brazil)
2020-2024
University of Genoa
2015-2024
Istituto Nazionale di Fisica Nucleare
2002-2024
University of Milan
2020-2024
Istituto Nazionale di Fisica Nucleare, Sezione di Milano Bicocca
2018-2023
Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Gran Sasso
2013-2022
Johannes Gutenberg University Mainz
2018-2021
European Organization for Nuclear Research
1995-2021
Forschungszentrum Jülich
2018-2020
A direct measurement of the 0.862 MeV 7Be solar neutrino interaction rate performed with Borexino detector at Laboratori Nazionali del Gran Sasso yields 46.0$\pm1.5_{\rm stat}$$^{+1.6}_{-1.5\,\rm syst}$ counts/day/(100 tons). Our result is first a sub-MeV an accuracy better than 5%. The hypothesis no oscillation for neutrinos rejected 4.9$\sigma$ C.L. Using latest Standard Solar Model (SSM) flux predictions, leads directly to precise determination survival probability $\nu_e$'s in vacuum,...
We report the direct measurement of 7Be solar neutrino signal rate performed with Borexino detector at Laboratori Nazionali del Gran Sasso. The interaction 0.862 MeV neutrinos is 49+/-3stat+/-4syst counts/(day.100 ton). hypothesis no oscillation for inconsistent our 4sigma C.L. Our result first survival probability nu(e) in transition region between matter-enhanced and vacuum-driven oscillations. improves experimental determination flux 7Be, pp, CNO nu(e), limit on effective magnetic moment...
We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, particle physics in each case viewed both theoretical experimental/observational perspectives. After reviewing the role active neutrinos physics, we focus on context Matter puzzle. Here, first motivation for based challenges tensions purely cold scenarios. then round out discussion by critically summarizing known...
We report the measurement of electron neutrino elastic scattering from 8B solar neutrinos with 3 MeV energy threshold by Borexino detector in Gran Sasso (Italy). The rate neutrino-induced events above this is 0.217 +- 0.038 (stat) 0.008 (syst) cpd/100 t, which corresponds to equivalent unoscillated flux (2.4 0.4 0.1 (syst))x10^6 cm^-2 s^-1, good agreement measurements SNO and SuperKamiokaNDE. Assuming predicted high metallicity Standard Solar Model, average survival probability measured be...
Borexino has been running since May 2007 at the LNGS with primary goal of detecting solar neutrinos. The detector, a large, unsegmented liquid scintillator calorimeter characterized by unprecedented low levels intrinsic radioactivity, is optimized for study lower energy part spectrum. During Phase-I (2007-2010) first detected and then precisely measured flux 7Be neutrinos, ruled out any significant day-night asymmetry their interaction rate, made direct observation pep set tightest upper...
We observed, for the first time, solar neutrinos in 1.0-1.5 MeV energy range. measured rate of pep neutrino interactions Borexino to be [3.1+-0.6(stat)+-0.3(syst)] counts/(day x 100 ton) and provided a constraint on CNO interaction <7.9 (95% C.L.). The absence signal is disfavored at 99.97% C.L., while 98% C.L. This unprecedented sensitivity was achieved by adopting novel data analysis techniques rejection cosmogenic 11C, dominant background 1-2 region. Assuming MSW-LMA solution...
We report the first results of DarkSide-50, a direct search for dark matter operating in underground Laboratori Nazionali del Gran Sasso (LNGS) and searching rare nuclear recoils possibly induced by weakly interacting massive particles (WIMPs). The detector is Liquid Argon Time Projection Chamber with (46.4+-0.7) kg active mass, operated inside 30 t organic liquid scintillator neutron veto, which turn installed at center 1 kt water Cherenkov veto residual flux cosmic rays. here null...
We report the results of a search for neutrinoless double-beta decay in 9.8 kg yr exposure (130)Te using bolometric detector array, CUORE-0. The characteristic energy resolution and background level region interest are 5.1±0.3 keV FWHM 0.058±0.004(stat)±0.002(syst)counts/(keV yr), respectively. median 90% C.L. lower-limit half-life sensitivity experiment is 2.9×10(24) surpasses previous searches. find no evidence place Bayesian lower bound on half-life, T(1/2)(0ν)>2.7×10(24) at Combining...
We report new results from the search for neutrinoless double-beta decay in $^{130}$Te with CUORE detector. This benefits a four-fold increase exposure, lower trigger thresholds and analysis improvements relative to our previous results. observe background of $(1.38\pm0.07)\cdot10^{-2}$ counts$/($keV$\cdot$kg$\cdot$yr$)$ $0\nu\beta\beta$ region interest and, total exposure 372.5 kg$\cdot$yr, we attain median exclusion sensitivity $1.7\cdot10^{25}$ yr. find no evidence set $90\%$ CI Bayesian...
Abstract The possibility that neutrinos may be their own antiparticles, unique among the known fundamental particles, arises from symmetric theory of fermions proposed by Ettore Majorana in 1937 1 . Given profound consequences such neutrinos, which is a potential explanation for matter–antimatter asymmetry universe via leptogenesis 2 , nature commands intense experimental scrutiny globally; one primary probes neutrinoless double beta (0 νββ ) decay. Here we show results search 0 decay 130...
We report on the search for dark matter weakly interacting massive particles (WIMPs) in mass range below $10\text{ }\text{ }\mathrm{GeV}/{\mathrm{c}}^{2}$, from analysis of entire dataset acquired with a low-radioactivity argon target by DarkSide-50 experiment at Laboratori Nazionali del Gran Sasso. The new benefits more accurate calibration detector response, improved background model, and better determination systematic uncertainties, allowing us to accurately model rate spectra down...
We present a search for dark matter particles with sub-GeV/c^{2} masses whose interactions have final state electrons using the DarkSide-50 experiment's (12 306±184) kg d low-radioactivity liquid argon exposure. By analyzing ionization signals, we exclude new parameter space matter-electron cross section σ[over ¯]_{e}, axioelectric coupling constant g_{Ae}, and photon kinetic mixing κ. also set first direct-detection constraints on angle |U_{e4}|^{2} keV/c^{2} sterile neutrinos.
Dark matter elastic scattering off nuclei can result in the excitation and ionization of recoiling atom through so-called Migdal effect. The energy deposition from electron adds to deposited by nuclear system allows for detection interactions sub-GeV/c^{2} mass dark matter. We present new constraints using dual-phase liquid argon time projection chamber DarkSide-50 experiment with an exposure (12 306±184) kg d. analysis is based on signal alone significantly enhances sensitivity DarkSide-50,...
Geo-neutrinos, electron anti-neutrinos produced in beta decays of naturally occurring radioactive isotopes the Earth, are a unique direct probe our planet's interior. We report first observation at more than 3$\sigma$ C.L. geo-neutrinos, performed with Borexino detector Laboratori Nazionali del Gran Sasso. Anti-neutrinos detected through neutron inverse decay reaction. With 252.6 ton-yr fiducial exposure after all selection cuts, we 9.9^{+4.1}_{-3.4}(^{+14.6}_{-8.2}) geo-neutrino events,...
A detailed description of the CUORICINO $^{130}\mathrm{Te}$ neutrinoless double-beta $(0 \ensuremath{\nu}\ensuremath{\beta}\ensuremath{\beta})$ decay experiment is given and recent results are reported. an array 62 tellurium oxide (${\mathrm{TeO}}_{2}$) bolometers with active mass 40.7 kg. It cooled to $~8\text{\ensuremath{-}}10$ mK by a dilution refrigerator shielded from environmental radioactivity energetic neutrons. running in Laboratori Nazionali del Gran Sasso (LNGS) Assergi, Italy....
Neutrinoless double-beta (0<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mi>ν</mml:mi><mml:mi>β</mml:mi><mml:mi>β</mml:mi></mml:math>) decay is a hypothesized lepton-number-violating process that offers the only known means of asserting possible Majorana nature neutrino mass. The Cryogenic Underground Observatory for Rare Events (CUORE) an upcoming experiment designed to search 0<mml:math id="M2"><mml:mi>ν</mml:mi><mml:mi>β</mml:mi><mml:mi>β</mml:mi></mml:math>decay...
A search for the solar neutrino effective magnetic moment has been performed using data from 1291.5 days exposure during second phase of Borexino experiment. No significant deviations expected shape electron recoil spectrum neutrinos have found, and a new upper limit on $\mu_{\nu}^{eff}$ $<$ 2.8$\cdot$10$^{-11}$ $\mu_{B}$ at 90\% c.l. set constraints sum fluxes implied by radiochemical gallium experiments.Using moment, limits moments flavor states, elements matrix Dirac Majorana neutrinos,...
We present the simultaneous measurement of interaction rates ${R}_{pp}$, ${R}_{\mathrm{Be}}$, ${R}_{pep}$ $pp$, $^{7}\mathrm{Be}$, and $pep$ solar neutrinos performed with a global fit to Borexino data in an extended energy range (0.19--2.93) MeV particular attention details analysis methods. This result was obtained by analyzing 1291.51 days Phase-II data, collected after extensive scintillator purification campaign. Using counts per day $(\mathrm{cpd})/100\text{ }\mathrm{ton}$ as unit, we...
A bstract The very low radioactive background of the Borexino detector, its large size, and well proved capability to detect both energy electron neutrinos antineutrinos make an ideal case for study short distance neutrino oscillations with artificial sources at Gran Sasso. This paper describes possible layouts 51 Cr ( ν e ) 144 Ce- Pr $$ \left( {{{\overline{\nu}}_e}} \right) source experiments in shows expected sensitivity eV mass sterile three different phases experiment. Expected results...