T. Barrett
- Particle physics theoretical and experimental studies
- Superconducting Materials and Applications
- High-Energy Particle Collisions Research
- Particle accelerators and beam dynamics
- Quantum Chromodynamics and Particle Interactions
- Chinese history and philosophy
- Museums and Cultural Heritage
- Augmented Reality Applications
- Astrophysics and Cosmic Phenomena
- Particle Detector Development and Performance
- Crafts, Textile, and Design
- Scientific Research and Discoveries
- Muon and positron interactions and applications
- Dark Matter and Cosmic Phenomena
- Innovative Human-Technology Interaction
- Neutrino Physics Research
Cornell University
2005-2024
We present the first results of Fermilab Muon g-2 Experiment for positive muon magnetic anomaly $a_\mu \equiv (g_\mu-2)/2$. The is determined from precision measurements two angular frequencies. Intensity variation high-energy positrons decays directly encodes difference frequency $\omega_a$ between spin-precession and cyclotron frequencies polarized muons in a storage ring. ring field measured using nuclear resonance probes calibrated terms equivalent proton spin precession...
We present a new measurement of the positive muon magnetic anomaly, a_{μ}≡(g_{μ}-2)/2, from Fermilab Muon g-2 Experiment using data collected in 2019 and 2020. have analyzed more than 4 times number positrons decay our previous result 2018 data. The systematic error is reduced by factor 2 due to better running conditions, stable beam, improved knowledge field weighted distribution, ω[over ˜]_{p}^{'}, anomalous precession frequency corrected for beam dynamics effects, ω_{a}. From ratio...
The Muon g-2 Experiment at Fermi National Accelerator Laboratory (FNAL) has measured the muon anomalous precession frequency $ω_a$ to an uncertainty of 434 parts per billion (ppb), statistical, and 56 ppb, systematic, with data collected in four storage ring configurations during its first physics run 2018. When combined a precision measurement magnetic field experiment's ring, determines anomaly $a_μ({\rm FNAL}) = 116\,592\,040(54) \times 10^{-11}$ (0.46 ppm). This article describes...
The Fermi National Accelerator Laboratory has measured the anomalous precession frequency $a^{}_\mu = (g^{}_\mu-2)/2$ of muon to a combined precision 0.46 parts per million with data collected during its first physics run in 2018. This paper documents measurement magnetic field storage ring. is monitored by nuclear resonance systems and calibrated terms equivalent proton spin spherical water sample at 34.7$^\circ$C. weighted distribution resulting $\tilde{\omega}'^{}_p$, denominator ratio...
We present details on a new measurement of the muon magnetic anomaly, $a_\mu = (g_\mu -2)/2$. The result is based positive data taken at Fermilab's Muon Campus during 2019 and 2020 accelerator runs. uses $3.1$ GeV$/c$ polarized muons stored in $7.1$-m-radius storage ring with $1.45$ T uniform field. value $ a_{\mu}$ determined from measured difference between spin precession frequency its cyclotron frequency. This normalized to strength field, using Nuclear Magnetic Resonance (NMR). ratio...
We present a new measurement of the positive muon magnetic anomaly, $a_\mu \equiv (g_\mu - 2)/2$, from Fermilab Muon $g\!-\!2$ Experiment using data collected in 2019 and 2020. have analyzed more than 4 times number positrons decay our previous result 2018 data. The systematic error is reduced by factor 2 due to better running conditions, stable beam, improved knowledge field weighted distribution, $\tilde{\omega}'^{}_p$, anomalous precession frequency corrected for beam dynamics effects,...
Personalization and social awareness, important aspects in the definition of a place, are traditionally overlooked design technology for museums. We describe Imprints, system to enhance role visitor participation beyond information receiver active creator sense place. Overall response Imprints is explored through interviews log analysis use. Despite some usability issues, was positive, it appropriated both personalization awareness others. The results suggest an opportunity introduce that...
This paper presents the beam dynamics systematic corrections and their uncertainties for Run-1 data set of Fermilab Muon g-2 Experiment. Two to measured muon precession frequency $\omega_a^m$ are associated with well-known effects owing use electrostatic quadrupole (ESQ) vertical focusing in storage ring. An average vertically oriented motional magnetic field is felt by relativistic muons passing transversely through radial electric components created ESQ system. The correction depends on...