- Particle physics theoretical and experimental studies
- High-Energy Particle Collisions Research
- Quantum Chromodynamics and Particle Interactions
- Muon and positron interactions and applications
- Superconducting Materials and Applications
- Atomic and Subatomic Physics Research
- Particle accelerators and beam dynamics
- Particle Detector Development and Performance
- Dark Matter and Cosmic Phenomena
- Advanced NMR Techniques and Applications
- Atomic and Molecular Physics
- Computational Physics and Python Applications
- Nuclear physics research studies
- Neutrino Physics Research
- Particle Accelerators and Free-Electron Lasers
- Cold Atom Physics and Bose-Einstein Condensates
- Noncommutative and Quantum Gravity Theories
- Quantum and Classical Electrodynamics
- Scientific Research and Discoveries
- Electron and X-Ray Spectroscopy Techniques
- Radiation Detection and Scintillator Technologies
- Radioactive Decay and Measurement Techniques
- Nuclear reactor physics and engineering
- Spectroscopy and Laser Applications
- Advanced Frequency and Time Standards
Brookhaven National Laboratory
2010-2024
Amherst College
2016-2024
University of Massachusetts Amherst
2014-2023
Banaras Hindu University
2018-2023
Augustana University
2018-2023
Charles University
2018-2023
Bhabha Atomic Research Centre
2023
RIKEN BNL Research Center
2007-2022
Istituto Nazionale di Fisica Nucleare, Sezione di Pisa
2021
PHENIX laboratory
2020
We present the final report from a series of precision measurements muon anomalous magnetic moment, ${a}_{\ensuremath{\mu}}=(g\ensuremath{-}2)/2$. The details experimental method, apparatus, data taking, and analysis are summarized. Data obtained at Brookhaven National Laboratory, using nearly equal samples positive negative muons, were used to deduce ${a}_{\ensuremath{\mu}}(\mathrm{\text{Expt}})=11659208.0(5.4)(3.3)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}10}$, where...
The anomalous magnetic moment of the negative muon has been measured to a precision 0.7 ppm (ppm) at Brookhaven Alternating Gradient Synchrotron. This result is based on data collected in 2001, and over an order magnitude more precise than previous measurement for muon. a(mu(-))=11 659 214(8)(3) x 10(-10) (0.7 ppm), where first uncertainty statistical second systematic, consistent with measurements anomaly positive average a(mu)(exp)=11 208(6) (0.5 ppm).
A precise measurement of the anomalous g value, a(mu) = (g-2)/2, for positive muon has been made at Brookhaven Alternating Gradient Synchrotron. The result a(mu+) 11 659 202(14) (6) x 10(-10) (1.3 ppm) is in good agreement with previous measurements and an error one third that combined data. current theoretical value from standard model a(mu)(SM) 159.6(6.7) (0.57 a(mu)(exp) - 43(16) which world average experimental value.
The spin structure function of the neutron gn1 has been determined over range 0.03<x<0.6 at an average Q2 2 (GeV/c)2 by measuring asymmetry in deep inelastic scattering polarized electrons from a 3He target energies between 19 and 26 GeV. integral is found to be F10gn1(x)dx=-0.022±0.011. Earlier reported proton results together with Bjorken sum rule predict F10gn1(x)dx=-0.059±0.019.Received 1 April 1993DOI:https://doi.org/10.1103/PhysRevLett.71.959©1993 American Physical Society
Measurements are reported of the proton and deuteron spin structure functions ${g}_{1}^{p}$ ${g}_{1}^{d}$ at beam energies 29.1, 16.2, 9.7 GeV, ${g}_{2}^{p}$ ${g}_{2}^{d}$ a energy 29.1 GeV. The integrals ${\ensuremath{\Gamma}}_{p}={\ensuremath{\int}}_{0}^{1}{g}_{1}^{p}{(x,Q}^{2})dx$ ${\ensuremath{\Gamma}}_{d}={\ensuremath{\int}}_{0}^{1}{g}_{1}^{d}{(x,Q}^{2})dx$ were evaluated fixed ${Q}^{2}=3(\mathrm{GeV}{/c)}^{2}$ using full data set to yield...
Three independent searches for an electric dipole moment (EDM) of the positive and negative muons have been performed, using spin precession data from muon g-2 storage ring at Brookhaven National Laboratory. Details on experimental apparatus three analyses are presented. Since individual results muon, as well combined result, d=-0.1(0.9)E-19 e-cm, all consistent with zero, we set a new EDM limit, |d| < 1.9E-19 e-cm (95% C.L.). This represents factor 5 improvement over previous best limit EDM.
We present a new measurement of the positive muon magnetic anomaly, a_{μ}≡(g_{μ}-2)/2, from Fermilab Muon g-2 Experiment using data collected in 2019 and 2020. have analyzed more than 4 times number positrons decay our previous result 2018 data. The systematic error is reduced by factor 2 due to better running conditions, stable beam, improved knowledge field weighted distribution, ω[over ˜]_{p}^{'}, anomalous precession frequency corrected for beam dynamics effects, ω_{a}. From ratio...
The Muon g-2 Experiment at Fermi National Accelerator Laboratory (FNAL) has measured the muon anomalous precession frequency $ω_a$ to an uncertainty of 434 parts per billion (ppb), statistical, and 56 ppb, systematic, with data collected in four storage ring configurations during its first physics run 2018. When combined a precision measurement magnetic field experiment's ring, determines anomaly $a_μ({\rm FNAL}) = 116\,592\,040(54) \times 10^{-11}$ (0.46 ppm). This article describes...
A higher precision measurement of the anomalous g value, a(mu)=(g-2)/2, for positive muon has been made at Brookhaven Alternating Gradient Synchrotron, based on data collected in year 2000. The result a(mu(+))=11 659 204(7)(5)x10(-10) (0.7 ppm) is good agreement with previous measurements and an error about one-half that combined data. present world average experimental value a(mu)(expt)=11 203(8)x10(-10) ppm).
We have measured the ratio $\frac{{g}_{1}^{p}}{{F}_{1}^{p}}$ over range $0.029<x<0.8$ and $1.3<{Q}^{2}<10$ ${(\mathrm{G}\mathrm{e}\mathrm{V}/\mathit{c})}^{2}$ using deep-inelastic scattering of polarized electrons from ammonia. An evaluation integral $\ensuremath{\int}{0}^{1}{g}_{1}^{p}(x, {Q}^{2})\mathrm{dx}$ at fixed ${Q}^{2}=3$ yields 0.127\ifmmode\pm\else\textpm\fi{}0.004(stat)\ifmmode\pm\else\textpm\fi{}0.010(syst), in agreement with previous experiments, but well below Ellis-Jaffe sum...
The neutron longitudinal and transverse asymmetries A1n A2n have been extracted from deep inelastic scattering of polarized electrons by a He3 target at incident energies 19.42, 22.66, 25.51 GeV. measurement allows for the determination spin structure functions g1n(x, Q2) g2n(x, over range 0.03<x<0.6 an average Q2 2 (GeV/c)2. data are used evaluation Ellis-Jaffe Bjorken sum rules. function is small negative within our measurement, yielding integral ∫0.030.6g1n(x)dx=−0.028±0.006 (stat)±0.006...
High precision measurements of two Zeeman hyperfine transitions in the ground state muonium a strong magnetic field have been made at LAMPF using microwave resonance spectroscopy and line narrowing technique. These determine most precise values structure interval $\ensuremath{\Delta}\ensuremath{\nu}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}4463302765(53)\mathrm{Hz}$ $(12\mathrm{ppb})$, ratio moments...
We report on a high-statistics measurement of the deuteron spin structure function ${g}_{1}^{d}$ at beam energy 29 GeV in kinematic range $0.029<x<0.8$ and $1<{Q}^{2}<10$ (GeV $/c$${)}^{2}$. The integral ${\ensuremath{\gamma}}_{1}^{d}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}\ensuremath{\int}{1}^{}{g}_{1}^{d}\mathrm{dx}$ evaluated fixed ${Q}^{2}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}3$ $/c$${)}^{2}$ gives...
A new experiment is described to detect a permanent electric dipole moment of the proton with sensitivity $10^{-29}e\cdot$cm by using polarized "magic" momentum $0.7$~GeV/c protons in an all-electric storage ring. Systematic errors relevant are discussed and techniques address them presented. The measurement sensitive physics beyond Standard Model at scale 3000~TeV.
The Fermi National Accelerator Laboratory has measured the anomalous precession frequency $a^{}_\mu = (g^{}_\mu-2)/2$ of muon to a combined precision 0.46 parts per million with data collected during its first physics run in 2018. This paper documents measurement magnetic field storage ring. is monitored by nuclear resonance systems and calibrated terms equivalent proton spin spherical water sample at 34.7$^\circ$C. weighted distribution resulting $\tilde{\omega}'^{}_p$, denominator ratio...
We present details on a new measurement of the muon magnetic anomaly, $a_\mu = (g_\mu -2)/2$. The result is based positive data taken at Fermilab's Muon Campus during 2019 and 2020 accelerator runs. uses $3.1$ GeV$/c$ polarized muons stored in $7.1$-m-radius storage ring with $1.45$ T uniform field. value $ a_{\mu}$ determined from measured difference between spin precession frequency its cyclotron frequency. This normalized to strength field, using Nuclear Magnetic Resonance (NMR). ratio...
Received 22 August 2002DOI:https://doi.org/10.1103/PhysRevLett.89.129903©2002 American Physical Society
We have measured proton and deuteron virtual photon-nucleon asymmetries ${A}_{2}^{p}$ ${A}_{2}^{d}$ structure functions ${g}_{2}^{p}$ ${g}_{2}^{d}$ over the range $0.03<x<0.8$ $1.3<{Q}^{2}<10(\mathrm{GeV}/c{)}^{2}$ by inelastically scattering polarized electrons off ammonia targets. Results for ${A}_{2}$ are significantly smaller than positivity limit $\sqrt{R}$ both Within experimental precision ${g}_{2}$ data well described twist-2 contribution, ${g}_{2}^{\mathrm{WW}}$. Twist-3 matrix...
The Cold molecule Nuclear Time-Reversal EXperiment (CeNTREX) is a new effort aiming for significant increase in sensitivity over the best present upper bounds on strength of hadronic time reversal ($T$) violating fundamental interactions. experimental signature will be shifts nuclear magnetic resonance frequencies $^{205}$Tl electrically-polarized thallium fluoride (TlF) molecules. Here we describe motivation studying these $T$-violating interactions and using TlF to do so. To achieve higher...
The aim of CeNTREX (Cold Molecule Nuclear Time-Reversal Experiment) is to search for time-reversal symmetry violation in the thallium nucleus, by measuring Schiff moment $^{205}$Tl polar molecule fluoride (TlF). uses a cryogenic beam TlF with rotational temperature 6.3(2) K. This results population spread over dozens and hyperfine sublevels TlF, while only single level useful measurement. Here we present protocol cooling degrees freedom beam, transferring majority Boltzmann distribution into...
We point out the potential of diatomic molecule PbO as a system in which to search for an electron electric dipole moment (EDM). Large oscillator strengths between various electronic states would be beneficial such experiment. As step toward determining these strengths, we have measured number radiative lifetimes and branching ratios PbO. discuss impact our measurements on proposed EDM experiment need further experimental theoretical work
Following a suggestion from Kostelecký et al., we evaluated test of CPT and Lorentz invariance the microwave spectroscopy muonium. Hamiltonian terms beyond standard model violating would contribute frequency shifts deltanu(12) deltanu(34) to nu(12) nu(34), two transitions involving muon spin flip, which were precisely measured in ground state muonium strong magnetic field 1.7 T. The be indicated by anticorrelated oscillations nu(34) at Earth's sidereal frequency. No time dependence was found...
A hydrogen-like atom consisting of a positive muon and an electron is known as muonium. It near-ideal two-body system for precision test bound-state theory fundamental symmetries. The MuSEUM collaboration performed new measurement the muonium ground-state hyperfine structure at J-PARC using high-intensity pulsed beam high-rate capable positron counter. resonance transition was successfully observed near-zero magnetic field, interval $ν_{\text{HFS}}$ = 4.463302(4) GHz obtained with relative...
Static electric dipole moments of nondegenerate systems probe mass scales for physics beyond the Standard Model well those reached directly at high energy colliders. Discrimination between different models, however, requires complementary searches in atomic-molecular-and-optical, nuclear and particle physics. In this report, we discuss current status prospects near future a compelling suite such experiments, along with developments needed encompassing theoretical framework.