P. Bloom

ORCID: 0000-0002-9686-1571
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Particle physics theoretical and experimental studies
  • Quantum Chromodynamics and Particle Interactions
  • High-Energy Particle Collisions Research
  • Particle Detector Development and Performance
  • Computational Physics and Python Applications
  • Atomic and Subatomic Physics Research
  • Superconducting Materials and Applications
  • Neutrino Physics Research
  • Particle Accelerators and Free-Electron Lasers
  • Dark Matter and Cosmic Phenomena
  • Nuclear physics research studies
  • Medical Imaging Techniques and Applications
  • Particle accelerators and beam dynamics
  • Cardiac Imaging and Diagnostics
  • Geophysics and Gravity Measurements
  • Electron Spin Resonance Studies
  • Solid-state spectroscopy and crystallography
  • Nuclear Physics and Applications
  • Muon and positron interactions and applications
  • Stochastic processes and statistical mechanics
  • Scientific Research and Discoveries
  • Microbial Metabolic Engineering and Bioproduction
  • Cosmology and Gravitation Theories
  • Biofuel production and bioconversion
  • Radiation Detection and Scintillator Technologies

North Carolina Central University
2024

North Central College
2021-2023

Archer Daniels Midland (United States)
2020

Stanford University
2001-2003

Stanford Synchrotron Radiation Lightsource
2003

SLAC National Accelerator Laboratory
2003

Menlo School
2003

University of Colorado System
2003

University of Colorado Boulder
2003

University of California, Davis
1998

We present the first results of Fermilab Muon g-2 Experiment for positive muon magnetic anomaly $a_\mu \equiv (g_\mu-2)/2$. The is determined from precision measurements two angular frequencies. Intensity variation high-energy positrons decays directly encodes difference frequency $\omega_a$ between spin-precession and cyclotron frequencies polarized muons in a storage ring. ring field measured using nuclear resonance probes calibrated terms equivalent proton spin precession...

10.1103/physrevlett.126.141801 article EN cc-by Physical Review Letters 2021-04-07

We present a new measurement of the positive muon magnetic anomaly, a_{μ}≡(g_{μ}-2)/2, from Fermilab Muon g-2 Experiment using data collected in 2019 and 2020. have analyzed more than 4 times number positrons decay our previous result 2018 data. The systematic error is reduced by factor 2 due to better running conditions, stable beam, improved knowledge field weighted distribution, ω[over ˜]_{p}^{'}, anomalous precession frequency corrected for beam dynamics effects, ω_{a}. From ratio...

10.1103/physrevlett.131.161802 article EN cc-by Physical Review Letters 2023-10-17

The Muon g-2 Experiment at Fermi National Accelerator Laboratory (FNAL) has measured the muon anomalous precession frequency $ω_a$ to an uncertainty of 434 parts per billion (ppb), statistical, and 56 ppb, systematic, with data collected in four storage ring configurations during its first physics run 2018. When combined a precision measurement magnetic field experiment's ring, determines anomaly $a_μ({\rm FNAL}) = 116\,592\,040(54) \times 10^{-11}$ (0.46 ppm). This article describes...

10.1103/physrevd.103.072002 article EN cc-by Physical review. D/Physical review. D. 2021-04-07

The Fermi National Accelerator Laboratory has measured the anomalous precession frequency $a^{}_\mu = (g^{}_\mu-2)/2$ of muon to a combined precision 0.46 parts per million with data collected during its first physics run in 2018. This paper documents measurement magnetic field storage ring. is monitored by nuclear resonance systems and calibrated terms equivalent proton spin spherical water sample at 34.7$^\circ$C. weighted distribution resulting $\tilde{\omega}'^{}_p$, denominator ratio...

10.1103/physreva.103.042208 article EN cc-by Physical review. A/Physical review, A 2021-04-07

We present details on a new measurement of the muon magnetic anomaly, $a_\mu = (g_\mu -2)/2$. The result is based positive data taken at Fermilab's Muon Campus during 2019 and 2020 accelerator runs. uses $3.1$ GeV$/c$ polarized muons stored in $7.1$-m-radius storage ring with $1.45$ T uniform field. value $ a_{\mu}$ determined from measured difference between spin precession frequency its cyclotron frequency. This normalized to strength field, using Nuclear Magnetic Resonance (NMR). ratio...

10.1103/physrevd.110.032009 article EN cc-by Physical review. D/Physical review. D. 2024-08-08

We present a new measurement of the positive muon magnetic anomaly, $a_\mu \equiv (g_\mu - 2)/2$, from Fermilab Muon $g\!-\!2$ Experiment using data collected in 2019 and 2020. have analyzed more than 4 times number positrons decay our previous result 2018 data. The systematic error is reduced by factor 2 due to better running conditions, stable beam, improved knowledge field weighted distribution, $\tilde{\omega}'^{}_p$, anomalous precession frequency corrected for beam dynamics effects,...

10.48550/arxiv.2308.06230 preprint EN cc-by arXiv (Cornell University) 2023-01-01

This paper presents the beam dynamics systematic corrections and their uncertainties for Run-1 data set of Fermilab Muon g-2 Experiment. Two to measured muon precession frequency $\omega_a^m$ are associated with well-known effects owing use electrostatic quadrupole (ESQ) vertical focusing in storage ring. An average vertically oriented motional magnetic field is felt by relativistic muons passing transversely through radial electric components created ESQ system. The correction depends on...

10.1103/physrevaccelbeams.24.044002 article EN cc-by Physical Review Accelerators and Beams 2021-04-27

Industrial biotechnology is poised for dramatic growth. A confluence of consumer demand; attractive feedstock quantity, quality, and price; technical innovation has created a perfect situation the industry to significantly expand. Since 2004 Werpy Peterson paper, "Top Value Added Chemicals from Biomass," biobased manufacturing technologies that make these processes products possible evolved significantly.1 New technology continues advance, there increasing demand materials. Paired with...

10.1089/ind.2020.29230.nda article EN cc-by Industrial Biotechnology 2020-12-01

10.1016/s0920-5632(00)01130-0 article EN Nuclear Physics B - Proceedings Supplements 2001-03-01
Coming Soon ...