E.R. Solano
- Magnetic confinement fusion research
- Fusion materials and technologies
- Superconducting Materials and Applications
- Ionosphere and magnetosphere dynamics
- Laser-Plasma Interactions and Diagnostics
- Particle accelerators and beam dynamics
- Nuclear reactor physics and engineering
- Plasma Diagnostics and Applications
- Solar and Space Plasma Dynamics
- High-Energy Particle Collisions Research
- Fluid Dynamics and Turbulent Flows
- Meteorological Phenomena and Simulations
- Electrostatic Discharge in Electronics
- Nuclear Physics and Applications
- Atomic and Subatomic Physics Research
- Gas Dynamics and Kinetic Theory
- Geomagnetism and Paleomagnetism Studies
- Model Reduction and Neural Networks
- Statistical Mechanics and Entropy
- Spectroscopy and Quantum Chemical Studies
- Electrochemical Analysis and Applications
- Stability and Controllability of Differential Equations
- Electromagnetic Launch and Propulsion Technology
- Pulsed Power Technology Applications
- Magnetic Bearings and Levitation Dynamics
Max Planck Institute for Plasma Physics
1999-2024
Universidad Complutense de Madrid
2004-2023
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas
1988-2023
HUN-REN Centre for Energy Research
2023
Culham Science Centre
2003-2022
Culham Centre for Fusion Energy
2014-2022
Royal Military Academy
2020
Commissariat à l'Énergie Atomique et aux Énergies Alternatives
2016
Institute of Plasma Physics
2014
ITER
2013
Abstract The quasi-continuous exhaust (QCE) regime is a that naturally type-I ELM-free. It combines the high density at plasma edge needed for power with normalised energy confinement typical H-mode operation. In QCE large-scale ELMs are avoided and high-frequent, low-amplitude filaments present leading to name-giving transport of particles energy.
This contribution reports first time was successfully achieved in JET metal wall. More so, it demonstrated recent deuterium-tritium...
Abstract Progress in physics understanding and theoretical model development of plasma transport confinement (TC) the ITPA TC Topical Group since publication ITER Physics Basis (IPB) document (Doyle et al 2007 Nucl. Fusion 47 S18) was summarized focusing on contributions to burning prediction control. This paper provides a general streamlined overview advances that were mainly led by joint experiments activities for last 15 years (see JEX/JA table appendix). starts with scientific strategy...
The dependence of plasma transport and confinement on the main hydrogenic ion isotope mass is fundamental importance for understanding turbulent and, therefore, accurate extrapolations from present tokamak experiments, which typically use a single hydrogen isotope, to burning plasmas such as ITER, will operate in deuterium–tritium mixtures. Knowledge properties edge barrier formation species critical view initial, low-activation phase ITER operations or helium its implications subsequent...
A comparison of the L–H power threshold (Pthr) in JET with all carbon, JET-C, and beryllium/tungsten wall (the ITER-like choice), JET-ILW, has been carried out experiments slow input ramps matched plasma shapes, divertor configuration IP/BT pairs. The low density dependence threshold, namely an increase below a minimum ne,min, which was first observed MkII-GB C subsequently not current MkII-HD geometry, is again JET-ILW. At densities above Pthr reduced by ∼30%, ∼40% when radiation from bulk...
Abstract In JET deuterium-tritium (D-T) plasmas, the fusion power is produced through thermonuclear reactions and between thermal ions fast particles generated by neutral beam injection (NBI) heating or accelerated electromagnetic wave in ion cyclotron range of frequencies (ICRFs). To complement experiments with 50/50 D/T mixtures maximizing reactivity, a scenario dominant non-thermal reactivity has been developed successfully demonstrated during second campaign DTE2, as it was predicted to...
Abstract The JET hybrid scenario has been developed from low plasma current carbon wall discharges to the record-breaking Deuterium-Tritium plasmas obtained in 2021 with ITER-like Be/W wall. development started pure Deuterium refinement of current, and toroidal magnetic field choices succeeded solving heat load challenges arising 37 MW injected power ITER like environment, keeping radiation edge core controlled, avoiding MHD instabilities reaching high neutron rates. have re-run Tritium...
Simultaneous current ramping and application of lower hybrid heating drive (LHCD) have produced a region with zero density within measurement errors in the core ( r/a< or =0.2) JET tokamak optimized shear discharges. The reduction is consistent simple physical explanation numerical simulations radial diffusion including effects LHCD. However, clamped at zero, indicating existence mechanism which prevents it from becoming negative.
An efficient full domain method for plasma equilibrium construction in iron core tokamaks is described. Illustrative calculations and comparison with results obtained from a finite using JET data are given. The show that the two methods agreement respect to global parameters such as stored energy, internal inductance, volume, edge safety factor. However, when there an uncertainty magnetic flux loop measurement, yields more accurate separatrix location
Views Icon Article contents Figures & tables Video Audio Supplementary Data Peer Review Share Twitter Facebook Reddit LinkedIn Tools Reprints and Permissions Cite Search Site Citation M. N. A. Beurskens, T. H. Osborne, P. Schneider, E. Wolfrum, L. Frassinetti, R. Groebner, Lomas, I. Nunes, S. Saarelma, Scannell, B. Snyder, D. Zarzoso, Balboa, Bray, Brix, J. Flanagan, C. Giroud, Giovannozzi, Kempenaars, Loarte, de la Luna, G. Maddison, F. Maggi, McDonald, Pasqualotto, Saibene, Sartori, Emilia...
Abstract Ion cyclotron resonance frequency (ICRF) heating has been an essential component in the development of high power H-mode scenarios Jet European Torus ITER-like wall (JET-ILW). The ICRF performance was improved by enhancing antenna-plasma coupling with dedicated main chamber gas injection, including preliminary minimization RF-induced plasma-wall interactions, while RF where optimized for core impurity screening terms ion position and minority hydrogen concentration. impact on...
Type I ELMy H-mode operation in JET with the ITER-like Be/W wall (JET-ILW) generally occurs at lower pedestal pressures compared to those full carbon (JET-C). The density is similar but temperature where type ELMs occur reduced and below so-called critical I–type III transition reported JET-C experiments. Furthermore, confinement factor H98(y,2) baseline plasmas JET-ILW low power fractions Ploss/Pthr,08 < 2 (where Ploss (Pin − dW/dt), Pthr,08 L–H threshold from Martin et al 2008 (J. Phys....
One of our grand challenges towards fusion energy is the achievement a high-performance plasma core coupled to boundary solution. The high confinement mode (H-mode) provides such due build-up an edge transport barrier leading pedestal. However, it usually features type-I localized modes (ELMs) which pose threat for long-duration operation in future devices as they induce large fluences onto facing components and typically are projected damage first wall. For devices, integration stationary...
Abstract The work describes the pedestal structure, transport and stability in an effective mass ( A eff ) scan from pure deuterium to tritium plasmas using a type I ELMy H-mode dataset which key parameters that affect behaviour (normalized pressure, ratio of separatrix density density, ion Larmor radius, collisionality rotation) are kept as constant possible. Experimental results show significant increase at top with increasing , modest reduction temperature pressure. variations heights...
Abstract In the paper we present an overview of interpretive modelling a database JET-ILW 2021 D-T discharges using TRANSP code. The main aim is to assess our capability computationally reproducing fusion performance various plasma scenarios different external heating and mixtures, understand driving mechanisms. We find that simulations confirm general power-law relationship between increasing power output, which supported by absolutely calibrated neutron yield measurements. A comparison...
A general analytical solution of the Grad–Shafranov equation is presented. Specific functional forms pressure and plasma current are used; allows arbitrary size, aspect ratio, elongation, triangularity, current, poloidal beta, without imposing undue constraints amongst those variables.
This paper presents the latest results on confinement studies in TJ-II stellarator. The inherently strong plasma–wall interaction of has been successfully reduced after lithium coating by vacuum evaporation. Besides H retention and low Z , Li was chosen because there exists a reactor-oriented interest this element, thus giving special relevance to investigation its properties. Li-coating led important changes plasma performance. Particularly, effective density limit NBI plasmas extended...
To study the impact of strong impurity radiation on energy confinement and discharge stability at JET-ILW, dedicated high-density, highly heated experiments with neon seeding have been performed. In these an increase in core especially pedestal region plus a characteristic X-point radiator inside confined observed. The increased separatrix had no confinement. Only highest puff rates heating powers () weak H-mode without back-transitions to L-mode (M-mode) could be achieved, while lower or...
Abstract We present an overview of results from a series L–H transition experiments undertaken at JET since the installation ITER-like-wall (JET-ILW), with beryllium wall tiles and tungsten divertor. Tritium, helium deuterium plasmas have been investigated. Initial in tritium show ohmic transitions low density power threshold for ( P LH ) is lower than ones densities, while we still lack contrasted data to provide scaling high densities. In there notable shift which minimum <?CDATA...
Abstract The recent deuterium–tritium campaign in JET-ILW (DTE2) has provided a unique opportunity to study the isotope dependence of L-H power threshold an ITER-like wall environment (Be and W divertor). Here we present results from dedicated transition experiments at JET-ILW, documenting tritium plasmas, comparing them with matching deuterium hydrogen datasets. From earlier it is known that as plasma isotopic composition changes deuterium, through varying deuterium/hydrogen concentrations,...
Abstract The reference ion cyclotron resonance frequency (ICRF) heating schemes for ITER deuterium–tritium (D-T) plasmas at the full magnetic field of 5.3 T are second harmonic and 3 He minority heating. wave-particle location these coincide central a wave 53 MHz T. Experiments have been carried out in major D-T campaign (DTE2) JET, its prior D campaigns, to integrate ICRF scenarios JET high-performance compare their performance with commonly used hydrogen (H) In 50:50 D:T plasmas, up 35% 5%...
Abstract The fusion reaction between deuterium and tritium, D ( T,n ) 4 He is the main source of energy in future thermonuclear reactors. Alpha-particles -ions) born with an average 3.5 MeV transferring to thermal plasma during their slowing down, should provide self-sustained D–T burn. adequate confinement α -particles essential efficient heating bulk steady burning a reactor plasma. That why fusion-born -particle studies have been priority task second experiments (DTE2) on Joint European...
Abstract This study investigates the dependence of radial electric field (Er) on line-averaged density in JET L-mode plasmas, utilizing Doppler backscattering measurements. Density ramp discharges up to limit are analyzed investigate physical processes that determine edge Er profile. At low densities, profile at midplane exhibits a pronounced peak near scrape-off layer (SOL) and shallow well inside separatrix. As increases, SOL diminishes quickly deepens until Greenwald fraction fGW ≈ 0.8,...
Abstract This paper reviews recent experimental advances in characterising the low-to-high confinement mode (L-H) transition tokamaks, with a particular focus on ITER-relevant results from JET and metallic wall tokamaks. Achieving H-mode is critical for success of ITER, robustness access recently revised ITER research plan assessed present paper. Findings machines are applied to predictions both early nuclear operational phases. Notably, new multi-machine, wall-specific scaling L-H power...
Abstract JET returned to deuterium-tritium operations in 2023 (DTE3 campaign), approximately two years after DTE2. DTE3 was designed as an extension of JET's 2022-2023 deuterium campaigns, which focused on developing scenarios for ITER and DEMO, integrating in-depth physics understanding control schemes. These were evaluated with mixed D-T fuel, using the only remaining tritium-capable tokamak until its closure 2023. A core-edge-SOL integrated H-mode scenario developed tested D-T, showing...