E. de la Luna

ORCID: 0000-0002-5420-0126
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Magnetic confinement fusion research
  • Fusion materials and technologies
  • Superconducting Materials and Applications
  • Ionosphere and magnetosphere dynamics
  • Laser-Plasma Interactions and Diagnostics
  • Particle accelerators and beam dynamics
  • Nuclear reactor physics and engineering
  • Plasma Diagnostics and Applications
  • Solar and Space Plasma Dynamics
  • Nuclear Physics and Applications
  • Meteorological Phenomena and Simulations
  • Particle Accelerators and Free-Electron Lasers
  • Laser-induced spectroscopy and plasma
  • High-Energy Particle Collisions Research
  • Video Surveillance and Tracking Methods
  • Atomic and Subatomic Physics Research
  • Human Pose and Action Recognition
  • Gyrotron and Vacuum Electronics Research
  • Fluid Dynamics and Turbulent Flows
  • Electrostatic Discharge in Electronics
  • Electron and X-Ray Spectroscopy Techniques
  • Dust and Plasma Wave Phenomena
  • Geophysics and Gravity Measurements
  • Hydrogen embrittlement and corrosion behaviors in metals
  • Neural Networks Stability and Synchronization

Culham Science Centre
2008-2024

Universidad Complutense de Madrid
2003-2024

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas
2001-2023

Fusion for Energy
2002-2023

Royal Military Academy
2020

Fusion Academy
2019

Fusion (United States)
2019

Gonzaga University
2014

Queen's University Belfast
2005-2013

Aalto University
2012

Type-I edge-localized modes (ELMs) have been mitigated at the JET tokamak using a static external $n=1$ perturbation field generated by four error correction coils located far from plasma. During application of ELM frequency increased factor 4 and amplitude ${\mathrm{D}}_{\ensuremath{\alpha}}$ signal decreased. The energy loss per normalized to total stored energy, $\ensuremath{\Delta}W/W$, dropped values below 2%. Transport analyses shows no or only moderate (up 20%) degradation confinement...

10.1103/physrevlett.98.265004 article EN Physical Review Letters 2007-06-29

A comparison of the L–H power threshold (Pthr) in JET with all carbon, JET-C, and beryllium/tungsten wall (the ITER-like choice), JET-ILW, has been carried out experiments slow input ramps matched plasma shapes, divertor configuration IP/BT pairs. The low density dependence threshold, namely an increase below a minimum ne,min, which was first observed MkII-GB C subsequently not current MkII-HD geometry, is again JET-ILW. At densities above Pthr reduced by ∼30%, ∼40% when radiation from bulk...

10.1088/0029-5515/54/2/023007 article EN Nuclear Fusion 2014-01-23

Abstract In JET deuterium-tritium (D-T) plasmas, the fusion power is produced through thermonuclear reactions and between thermal ions fast particles generated by neutral beam injection (NBI) heating or accelerated electromagnetic wave in ion cyclotron range of frequencies (ICRFs). To complement experiments with 50/50 D/T mixtures maximizing reactivity, a scenario dominant non-thermal reactivity has been developed successfully demonstrated during second campaign DTE2, as it was predicted to...

10.1088/1741-4326/ace2d8 article EN cc-by Nuclear Fusion 2023-10-12

Abstract The JET hybrid scenario has been developed from low plasma current carbon wall discharges to the record-breaking Deuterium-Tritium plasmas obtained in 2021 with ITER-like Be/W wall. development started pure Deuterium refinement of current, and toroidal magnetic field choices succeeded solving heat load challenges arising 37 MW injected power ITER like environment, keeping radiation edge core controlled, avoiding MHD instabilities reaching high neutron rates. have re-run Tritium...

10.1088/1741-4326/acde8d article EN cc-by Nuclear Fusion 2023-10-12

Recent experiments on JET have shown that type-I edge localized modes (ELMs) can be controlled by the application of static low n = 1 external magnetic perturbation fields produced four error field correction coils (EFCC) mounted far away from plasma between transformer limbs. When an with amplitude a few mT at (the normalized poloidal flux, ?, is larger than 0.95) applied during stationary phase ELMy H-mode plasma, ELM frequency rises ~30?Hz up to ~120?Hz. The energy loss per total stored...

10.1088/0029-5515/50/2/025013 article EN Nuclear Fusion 2010-01-15

The W-transport in the core plasma of JET is investigated experimentally by deriving W-concentration profiles from modelling signals soft x-ray cameras. For case pure neutral beam heating W accumulates (r/a < 0.3) approaching W-concentrations 10−3 between sawtooth crashes, which flatten W-profile to a concentration about 3 × 10−5. When central Ion cyclotron resonant additionally applied decays phases that exhibit changed mode activity, while also electron temperature increases and density...

10.1088/0741-3335/55/12/124036 article EN Plasma Physics and Controlled Fusion 2013-11-28

Views Icon Article contents Figures & tables Video Audio Supplementary Data Peer Review Share Twitter Facebook Reddit LinkedIn Tools Reprints and Permissions Cite Search Site Citation M. N. A. Beurskens, T. H. Osborne, P. Schneider, E. Wolfrum, L. Frassinetti, R. Groebner, Lomas, I. Nunes, S. Saarelma, Scannell, B. Snyder, D. Zarzoso, Balboa, Bray, Brix, J. Flanagan, C. Giroud, Giovannozzi, Kempenaars, Loarte, de la Luna, G. Maddison, F. Maggi, McDonald, Pasqualotto, Saibene, Sartori, Emilia...

10.1063/1.3593008 article EN Physics of Plasmas 2011-05-01

Abstract New experiments in 2013–2014 have investigated the physics responsible for decrease H-mode pedestal confinement observed initial phase of JET-ILW operation (2012 Experimental Campaigns). The effects plasma triangularity, global beta and neutrals on stability been systematically. pedestals is analysed framework peeling–ballooning model assumptions predictive code EPED. Low D content plasma, achieved either by low 2 gas injection rates or divertor configurations with optimum pumping,...

10.1088/0029-5515/55/11/113031 article EN Nuclear Fusion 2015-09-01

A new technique has been developed to produce plasmas with improved confinement relative the H98,y2 scaling law (ITER Physics Expert Groups on Confinement and Transport Modelling Database ITER Basics Editors EDA 1999 Nucl. Fusion 39 2175) JET tokamak. In mid-size tokamaks ASDEX upgrade DIII-D heating during current formation is used a flat q-profile minimum close 1. On this leads q-profiles similar q but opposite other not an state. By changing method utilizing faster ramp temporary higher...

10.1088/0741-3335/54/9/095001 article EN Plasma Physics and Controlled Fusion 2012-07-27

In the recent JET experimental campaigns with new ITER-like wall (JET-ILW), major progress has been achieved in characterization and operation of H-mode regime metallic environments: (i) plasma breakdown at first attempt X-point L-mode recovered a few days operation; (ii) stationary stable type-I ELMy H-modes βN ∼ 1.4 have low high triangularity shape plasmas are showing that their operational domain H = 1 is significantly reduced JET-ILW mainly because need to inject large amount gas (above...

10.1088/0029-5515/54/1/013011 article EN Nuclear Fusion 2013-12-17

Type I ELMy H-mode operation in JET with the ITER-like Be/W wall (JET-ILW) generally occurs at lower pedestal pressures compared to those full carbon (JET-C). The density is similar but temperature where type ELMs occur reduced and below so-called critical I–type III transition reported JET-C experiments. Furthermore, confinement factor H98(y,2) baseline plasmas JET-ILW low power fractions Ploss/Pthr,08 < 2 (where Ploss (Pin − dW/dt), Pthr,08 L–H threshold from Martin et al 2008 (J. Phys....

10.1088/0029-5515/54/4/043001 article EN Nuclear Fusion 2014-03-10

New H-mode regimes with high confinement, low core impurity accumulation, and small edge-localized mode perturbations have been obtained in magnetically confined plasmas at the Joint European Torus tokamak. Such are achieved by means of optimized particle fueling conditions input power, current, magnetic field, which lead to a self-organized state strong increase rotation ion temperature decrease edge density. An interplay between plasma regions leads reduced turbulence levels outward...

10.1063/5.0072236 article EN Physics of Plasmas 2022-03-01

This paper presents the experimental characterization of pedestal parameters, edge localized mode (ELM) energy, and particle losses from main plasma corresponding ELM energy fluxes on facing components for a series dedicated experiments in Joint European Torus (JET). From these experiments, it is demonstrated that simple hypothesis relating peeling-ballooning linear instability to not valid. Contrary previous observations at lower triangularities, small low collisionality have been obtained...

10.1063/1.1707025 article EN Physics of Plasmas 2004-04-29

Extensive analysis of disruptions in JET has helped advance the understanding trends disruption-generated runaway electrons. Tomographic reconstruction soft x-ray emission made possible a detailed observation magnetic flux geometry evolution during disruptions. With aid and hard diagnostics electrons have been detected at very beginning A study electron parameters shown that an approximate upper bound for conversion efficiency pre-disruptive plasma currents into runaways is about 60% over...

10.1088/0029-5515/46/2/011 article EN Nuclear Fusion 2006-01-16

Real-time simultaneous control of several radially distributed magnetic and kinetic plasma parameters is being investigated on JET, in view developing integrated advanced tokamak scenarios. This paper describes the new model-based profile controller which has been implemented during 2006–2007 experimental campaigns. The aims to use combination heating current drive (H&amp;CD) systems—and optionally poloidal field (PF) system—in an optimal way regulate evolution parameter profiles such as...

10.1088/0029-5515/48/10/106001 article EN Nuclear Fusion 2008-08-28

To consolidate International Thermonuclear Experimental Reactor (ITER) design choices and prepare for its operation, Joint European Torus (JET) has implemented ITER's plasma facing materials, namely, Be the main wall W in divertor. In addition, protection systems, diagnostics, vertical stability control were upgraded heating capability of neutral beams was increased to over 30 MW. First results confirm expected benefits limitations all metal components (PFCs) but also yield understanding...

10.1063/1.4804411 article EN Physics of Plasmas 2013-05-01

Experiments on JET with a carbon-fibre composite wall have explored the reduction of steady-state power load in an ELMy H-mode scenario at high Greenwald fraction ∼0.8, constant and close to L H transition. This paper reports systematic study due effect fuelling combination seeding over wide range pedestal density ((4–8) × 1019 m−3) detailed documentation divertor, main plasma conditions, as well comparative two extrinsic impurity nitrogen neon. It also impact overall behaviour, possible...

10.1088/0029-5515/52/6/063022 article EN Nuclear Fusion 2012-05-30

2019) 076038 (17pp) (mainly ETG and ITG) by 50%.This suggests that, in these plasmas, the increase turbulent transport due to outward shift of density might play an important role decrease pedestal performance.

10.1088/1741-4326/ab1eb9 article EN Nuclear Fusion 2019-05-02

To study the impact of strong impurity radiation on energy confinement and discharge stability at JET-ILW, dedicated high-density, highly heated experiments with neon seeding have been performed. In these an increase in core especially pedestal region plus a characteristic X-point radiator inside confined observed. The increased separatrix had no confinement. Only highest puff rates heating powers () weak H-mode without back-transitions to L-mode (M-mode) could be achieved, while lower or...

10.1088/1741-4326/ab3f7a article EN Nuclear Fusion 2019-08-30

Dedicated experiments to generate energetic D ions and fusion-born alpha particles were performed at the Joint European Torus (JET) with ITER-like wall (ILW). Using 3-ion radio frequency (RF) heating scenario, deuterium from neutral beam injection (NBI) accelerated in core of mixed plasmas higher energies ion cyclotron resonance (ICRF) waves, turn leading a core-localized source particles. The fast-ion distribution RF-accelerated D-NBI was controlled by varying ICRF NBI power ( 4–6 MW, 3–20...

10.1088/1741-4326/abb95d article EN Nuclear Fusion 2020-09-17

Abstract The EUROfusion JET-ILW pedestal database is described, with emphasis on three main issues. First, the technical aspects are introduced, including a description of data selection, datasets, diagnostics used, experimental and theoretical methods implemented definitions. Second, structure stability described. In particular, work describes links between engineering parameters (power, gas divertor configuration) disagreement peeling-ballooning (PB) model ideal magnetohydrodynamics...

10.1088/1741-4326/abb79e article EN Nuclear Fusion 2020-09-11

Abstract We present an overview of results from a series L–H transition experiments undertaken at JET since the installation ITER-like-wall (JET-ILW), with beryllium wall tiles and tungsten divertor. Tritium, helium deuterium plasmas have been investigated. Initial in tritium show ohmic transitions low density power threshold for ( P LH ) is lower than ones densities, while we still lack contrasted data to provide scaling high densities. In there notable shift which minimum <?CDATA...

10.1088/1741-4326/ac4ed8 article EN Nuclear Fusion 2022-01-25

Abstract The recent deuterium–tritium campaign in JET-ILW (DTE2) has provided a unique opportunity to study the isotope dependence of L-H power threshold an ITER-like wall environment (Be and W divertor). Here we present results from dedicated transition experiments at JET-ILW, documenting tritium plasmas, comparing them with matching deuterium hydrogen datasets. From earlier it is known that as plasma isotopic composition changes deuterium, through varying deuterium/hydrogen concentrations,...

10.1088/1741-4326/acee12 article EN cc-by Nuclear Fusion 2023-10-12

Abstract The reference ion cyclotron resonance frequency (ICRF) heating schemes for ITER deuterium–tritium (D-T) plasmas at the full magnetic field of 5.3 T are second harmonic and 3 He minority heating. wave-particle location these coincide central a wave 53 MHz T. Experiments have been carried out in major D-T campaign (DTE2) JET, its prior D campaigns, to integrate ICRF scenarios JET high-performance compare their performance with commonly used hydrogen (H) In 50:50 D:T plasmas, up 35% 5%...

10.1088/1741-4326/aceb08 article EN cc-by Nuclear Fusion 2023-10-12
Coming Soon ...