Rongxin Fang

ORCID: 0000-0003-0107-7504
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Single-cell and spatial transcriptomics
  • Genomics and Chromatin Dynamics
  • Epigenetics and DNA Methylation
  • RNA Research and Splicing
  • Neuroinflammation and Neurodegeneration Mechanisms
  • RNA modifications and cancer
  • Advanced biosensing and bioanalysis techniques
  • Cell Image Analysis Techniques
  • Chromosomal and Genetic Variations
  • Gene Regulatory Network Analysis
  • Cytomegalovirus and herpesvirus research
  • Neurogenesis and neuroplasticity mechanisms
  • Molecular Biology Techniques and Applications
  • RNA and protein synthesis mechanisms
  • Animal Genetics and Reproduction
  • Pancreatic function and diabetes
  • Advanced Fluorescence Microscopy Techniques
  • Cancer-related gene regulation
  • Cancer, Hypoxia, and Metabolism
  • Genomic variations and chromosomal abnormalities
  • Cancer Genomics and Diagnostics
  • Genomics and Phylogenetic Studies
  • Machine Learning in Bioinformatics
  • Immune cells in cancer
  • Error Correcting Code Techniques

University of California, San Diego
2016-2024

Howard Hughes Medical Institute
2020-2024

Harvard University
2020-2024

Ludwig Cancer Research
2016-2023

Beijing Institute of Genomics
2013-2015

Chinese Academy of Sciences
2015

Heidelberg University
2013

University of Cambridge
2013

University of Copenhagen
2013

Research Complex at Harwell
2013

Trygve E. Bakken Nikolas L. Jorstad Qiwen Hu Blue B. Lake Wei Tian and 95 more Brian Kalmbach Megan Crow Rebecca D. Hodge Fenna M. Krienen Staci A. Sorensen Jeroen Eggermont Zizhen Yao Brian D. Aevermann Andrew Aldridge Anna Bartlett Darren Bertagnolli Tamara Casper Rosa Castanon Kirsten Crichton Tanya L. Daigle Rachel Dalley Nick Dee Nikolai Dembrow Dinh Diep Song‐Lin Ding Weixiu Dong Rongxin Fang Stephan Fischer Melissa Goldman Jeff Goldy Lucas T. Graybuck Brian R. Herb Xiaomeng Hou Jayaram Kancherla Matthew Kroll Kanan Lathia Baldur van Lew Yang Eric Li Christine S. Liu Hanqing Liu Jacinta Lucero Anup Mahurkar Delissa McMillen Jeremy A. Miller Marmar Moussa Joseph R. Nery Philip R. Nicovich Sheng-Yong Niu Joshua Orvis Julia K. Osteen Scott F. Owen Carter R. Palmer Thanh Pham Nongluk Plongthongkum Olivier Poirion Nora Reed Christine Rimorin Angeline Rivkin William J. Romanow Adriana E. Sedeño-Cortés Kimberly Siletti Saroja Somasundaram Josef Šulc Michael Tieu Amy Torkelson Herman Tung Xinxin Wang Fangming Xie Anna Marie Yanny Yun Zhang Seth A. Ament M. Margarita Behrens Héctor Corrada Bravo Jerold Chun Alexander Dobin Jesse Gillis Ronna Hertzano Patrick R. Hof Thomas Höllt Gregory D. Horwitz C. Dirk Keene Peter V. Kharchenko Andrew L. Ko Boudewijn P. F. Lelieveldt Chongyuan Luo Eran A. Mukamel António Pinto‐Duarte Sebastian Preißl Aviv Regev Bing Ren Richard H. Scheuermann Kimberly A. Smith William J. Spain Owen White Christof Koch Michael Hawrylycz Bosiljka Tasic Evan Z. Macosko Steven A. McCarroll Jonathan T. Ting

Abstract The primary motor cortex (M1) is essential for voluntary fine-motor control and functionally conserved across mammals 1 . Here, using high-throughput transcriptomic epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys mice, we demonstrate a broadly cellular makeup this region, with similarities that mirror evolutionary distance are consistent between the transcriptome epigenome. core molecular identities neuronal non-neuronal cell types allow us to...

10.1038/s41586-021-03465-8 article EN cc-by Nature 2021-10-06
Edward M. Callaway Hong‐Wei Dong Joseph R. Ecker Michael Hawrylycz Z. Josh Huang and 95 more Ed S. Lein John Ngai Pavel Osten Bing Ren Andreas S. Tolias Owen White Hongkui Zeng Xiaowei Zhuang Giorgio A. Ascoli M. Margarita Behrens Jerold Chun Guoping Feng James C. Gee Satrajit Ghosh Yaroslav O. Halchenko Ronna Hertzano Byung Kook Lim Maryann E. Martone Lydia Ng Lior Pachter Alexander J. Ropelewski Timothy L. Tickle X. William Yang Kun Zhang Trygve E. Bakken Philipp Berens Tanya L. Daigle Julie A. Harris Nikolas L. Jorstad Brian Kalmbach Dmitry Kobak Yang Eric Li Hanqing Liu Katherine S. Matho Eran A. Mukamel Maitham Naeemi Federico Scala Pengcheng Tan Jonathan T. Ting Fangming Xie Meng Zhang Zhuzhu Zhang Jingtian Zhou Brian Zingg Ethan J. Armand Zizhen Yao Darren Bertagnolli Tamara Casper Kirsten Crichton Nick Dee Dinh Diep Song‐Lin Ding Weixiu Dong Elizabeth L. Dougherty Olivia Fong Melissa Goldman Jeff Goldy Rebecca D. Hodge Lijuan Hu C. Dirk Keene Fenna M. Krienen Matthew Kroll Blue B. Lake Kanan Lathia Sten Linnarsson Christine S. Liu Evan Z. Macosko Steven A. McCarroll Delissa McMillen Naeem Nadaf Thuc Nghi Nguyen Carter R. Palmer Thanh Pham Nongluk Plongthongkum Nora Reed Aviv Regev Christine Rimorin William J. Romanow Stephen Savoia Kimberly Siletti Kimberly A. Smith Josef Šulc Bosiljka Tasic Michael Tieu Amy Torkelson Herman Tung Cindy T. J. van Velthoven Charles Vanderburg Anna Marie Yanny Rongxin Fang Xiaomeng Hou Jacinta Lucero Julia K. Osteen António Pinto‐Duarte Olivier Poirion

Here we report the generation of a multimodal cell census and atlas mammalian primary motor cortex as initial product BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved morphological electrophysiological properties cellular resolution input-output mapping, integrated through cross-modal computational analysis. Our results advance collective knowledge...

10.1038/s41586-021-03950-0 article EN cc-by Nature 2021-10-06

Identification of the cis-regulatory elements controlling cell-type specific gene expression patterns is essential for understanding origin cellular diversity. Conventional assays to map regulatory via open chromatin analysis primary tissues hindered by sample heterogeneity. Single cell accessible (scATAC-seq) can overcome this limitation. However, high-level noise each single profile and large volume data pose unique computational challenges. Here, we introduce SnapATAC, a software package...

10.1038/s41467-021-21583-9 article EN cc-by Nature Communications 2021-02-26

Abstract Single-cell transcriptomics can provide quantitative molecular signatures for large, unbiased samples of the diverse cell types in brain 1–3 . With proliferation multi-omics datasets, a major challenge is to validate and integrate results into biological understanding cell-type organization. Here we generated transcriptomes epigenomes from more than 500,000 individual cells mouse primary motor cortex, structure that has an evolutionarily conserved role locomotion. We developed...

10.1038/s41586-021-03500-8 article EN cc-by Nature 2021-10-06

The human cerebral cortex has tremendous cellular diversity. How different cell types are organized in the and how organization varies across species remain unclear. In this study, we performed spatially resolved single-cell profiling of 4000 genes using multiplexed error-robust fluorescence situ hybridization (MERFISH), identified more than 100 transcriptionally distinct populations, generated a molecularly defined atlas middle superior temporal gyrus. We further explored cell-cell...

10.1126/science.abm1741 article EN cc-by Science 2022-06-30

Abstract The mammalian cerebrum performs high-level sensory perception, motor control and cognitive functions through highly specialized cortical subcortical structures 1 . Recent surveys of mouse human brains with single-cell transcriptomics 2–6 high-throughput imaging technologies 7,8 have uncovered hundreds neural cell types distributed in different brain regions, but the transcriptional regulatory programs that are responsible for unique identity function each type remain unknown. Here...

10.1038/s41586-021-03604-1 article EN cc-by Nature 2021-10-06

Single-cell technologies measure unique cellular signatures but are typically limited to a single modality. Computational approaches allow the fusion of diverse single-cell data types, their efficacy is difficult validate in absence authentic multi-omic measurements. To comprehensively assess molecular phenotypes cells, we devised single-nucleus methylcytosine, chromatin accessibility, and transcriptome sequencing (snmCAT-seq) applied it postmortem human frontal cortex tissue. We developed...

10.1016/j.xgen.2022.100107 article EN cc-by Cell Genomics 2022-03-01

Cytosine DNA methylation is essential for mammalian development but understanding of its spatiotemporal distribution in the developing embryo remains limited

10.1038/s41586-020-2119-x article EN cc-by Nature 2020-07-29

Hi-C and chromatin immunoprecipitation (ChIP) have been combined to identify long-range interactions genome-wide at reduced cost enhanced resolution, but extracting information from the resulting datasets has challenging. Here we describe a computational method, MAPS, Model-based Analysis of PLAC-seq HiChIP, process data such experiments interactions. MAPS adopts zero-truncated Poisson regression framework explicitly remove systematic biases in HiChIP datasets, then uses normalized contact...

10.1371/journal.pcbi.1006982 article EN cc-by PLoS Computational Biology 2019-04-15
Trygve E. Bakken Nikolas L. Jorstad Qiwen Hu Blue B. Lake Wei Tian and 95 more Brian Kalmbach Megan Crow Rebecca D. Hodge Fenna M. Krienen Staci A. Sorensen Jeroen Eggermont Zizhen Yao Brian D. Aevermann Andrew Aldridge Anna Bartlett Darren Bertagnolli Tamara Casper Rosa Castanon Kirsten Crichton Tanya L. Daigle Rachel Dalley Nick Dee Nikolai Dembrow Dinh Diep Song‐Lin Ding Weixiu Dong Rongxin Fang Stephan Fischer Melissa Goldman Jeff Goldy Lucas T. Graybuck Brian R. Herb Xiaomeng Hou Jayaram Kancherla Matthew Kroll Kanan Lathia Baldur van Lew Yang Eric Li Christine S. Liu Hanqing Liu Jacinta Lucero Anup Mahurkar Delissa McMillen Jeremy A. Miller Marmar Moussa Joseph R. Nery Philip R. Nicovich Joshua Orvis Julia K. Osteen Scott F. Owen Carter R. Palmer Thanh Pham Nongluk Plongthongkum Olivier Poirion Nora Reed Christine Rimorin Angeline Rivkin William J. Romanow Adriana E. Sedeño-Cortés Kimberly Siletti Saroja Somasundaram Josef Šulc Michael Tieu Amy Torkelson Herman Tung Xinxin Wang Fangming Xie Anna Marie Yanny Yun Zhang Seth A. Ament M. Margarita Behrens Héctor Corrada Bravo Jerold Chun Alexander Dobin Jesse Gillis Ronna Hertzano Patrick R. Hof Thomas Höllt Gregory D. Horwitz C. Dirk Keene Peter V. Kharchenko Andrew L. Ko Boudewijn P. F. Lelieveldt Chongyuan Luo Eran A. Mukamel Sebastian Preißl Aviv Regev Bing Ren Richard H. Scheuermann Kimberly A. Smith William J. Spain Owen White Christof Koch Michael Hawrylycz Bosiljka Tasic Evan Z. Macosko Steven A. McCarroll Jonathan T. Ting Hongkui Zeng Kun Zhang

Abstract The primary motor cortex (M1) is essential for voluntary fine control and functionally conserved across mammals. Using high-throughput transcriptomic epigenomic profiling of over 450,000 single nuclei in human, marmoset monkey, mouse, we demonstrate a broadly cellular makeup this region, whose similarity mirrors evolutionary distance consistent between the transcriptome epigenome. core molecular identity neuronal non-neuronal types allowed generation cross-species consensus cell...

10.1101/2020.03.31.016972 preprint EN cc-by-nc-nd bioRxiv (Cold Spring Harbor Laboratory) 2020-04-01

Highlights•A-to-I RNA editing alters cell-cycle transit by impairing pri-miR-26a maturation•Enforced miR-26a expression reduces BC CML progenitor propagation in vivo•pri-miR-155 downregulation ADAR1 stabilizes MDM2 progenitors•Hyper-editing of 3′ UTR prevents miR-155 binding progenitorsSummaryAdenosine deaminase associated with RNA1 (ADAR1) deregulation contributes to therapeutic resistance many malignancies. Here we show that ADAR1-induced hyper-editing normal human hematopoietic...

10.1016/j.ccell.2018.11.017 article EN publisher-specific-oa Cancer Cell 2019-01-01

Abstract Single-cell Hi-C (scHi-C) analysis has been increasingly used to map chromatin architecture in diverse tissue contexts, but computational tools define loops at high resolution from scHi-C data are still lacking. Here, we describe Single-Nucleus Analysis Pipeline for (SnapHiC), a method that can identify and accuracy data. Using 742 mouse embryonic stem cells, benchmark SnapHiC against number of developed mapping interactions bulk Hi-C. We further demonstrate its use by analyzing...

10.1038/s41592-021-01231-2 article EN cc-by Nature Methods 2021-08-26
Michael Hawrylycz Maryann E. Martone Giorgio A. Ascoli Jan G. Bjaalie Hong‐Wei Dong and 95 more Satrajit Ghosh Jesse Gillis Ronna Hertzano David R. Haynor Patrick R. Hof Yongsoo Kim Ed S. Lein Yufeng Liu Jeremy A. Miller Partha P. Mitra Eran A. Mukamel Lydia Ng David Osumi-Sutherland Hanchuan Peng Patrick L. Ray Raymond Sanchez Aviv Regev Alex Ropelewski Richard H. Scheuermann Shawn Zheng Kai Tan Carol L. Thompson Timothy L. Tickle Hagen Tilgner Merina Varghese Brock A. Wester Owen White Hongkui Zeng Brian D. Aevermann David Allemang Seth A. Ament Thomas L. Athey C L Baker Katherine Baker Pamela Baker Anita Bandrowski Samik Banerjee Prajal Bishwakarma Ambrose Carr Min Chen Roni Choudhury Jonah Cool Heather H. Creasy Florence D. D’Orazi Kylee Degatano Ben Dichter Song‐Lin Ding Tim Dolbeare Joseph R. Ecker Rongxin Fang Jean‐Christophe Fillion‐Robin Timothy P. Fliss James C. Gee Tom Gillespie Nathan W. Gouwens Guo‐Qiang Zhang Yaroslav O. Halchenko Nomi L. Harris Brian R. Herb Houri Hintiryan Gregory Hood S. Horvath Bing‐Xing Huo Dorota Jarecka Shengdian Jiang Farzaneh Khajouei Elizabeth Kiernan Hüseyin Kır Lauren Kruse Changkyu Lee Boudewijn P. F. Lelieveldt Yang Eric Li Hanqing Liu Lijuan Liu Anup Markuhar James C. Mathews Kaylee L. Mathews Christopher Mezias Michael I. Miller Tyler Mollenkopf Shoaib Mufti Chris Mungall Joshua Orvis Maja Puchades Lei Qu Joseph P. Receveur Bing Ren Nathan Sjoquist Brian Staats Daniel J. Tward Cindy T. J. van Velthoven Quanxin Wang Fangming Xie Hua Xu Zizhen Yao Zhixi Yun

Characterizing cellular diversity at different levels of biological organization and across data modalities is a prerequisite to understanding the function cell types in brain. Classification neurons also essential manipulate controlled ways understand their variation vulnerability brain disorders. The BRAIN Initiative Cell Census Network (BICCN) an integrated network data-generating centers, archives, standards developers, with goal systematic multimodal type profiling characterization....

10.1371/journal.pbio.3002133 article EN cc-by PLoS Biology 2023-06-30

Abstract Identification of the cis -regulatory elements controlling cell-type specific gene expression patterns is essential for understanding origin cellular diversity. Conventional assays to map regulatory via open chromatin analysis primary tissues hindered by heterogeneity samples. Single cell transposase-accessible (scATAC-seq) can overcome this limitation. However, high-level noise each single profile and large volumes data could pose unique computational challenges. Here, we introduce...

10.1101/615179 preprint EN bioRxiv (Cold Spring Harbor Laboratory) 2019-04-22

Abstract Single cell transcriptomics has transformed the characterization of brain identity by providing quantitative molecular signatures for large, unbiased samples populations. With proliferation taxonomies based on individual datasets, a major challenge is to integrate and validate results toward defining biologically meaningful types. We used battery single-cell transcriptome epigenome measurements generated BRAIN Initiative Cell Census Network (BICCN) comprehensively assess types in...

10.1101/2020.02.29.970558 preprint EN cc-by-nc-nd bioRxiv (Cold Spring Harbor Laboratory) 2020-03-02

In 2021, the World Health Organization reclassified glioblastoma, most common form of adult brain cancer, into isocitrate dehydrogenase (IDH)-wild-type glioblastomas and grade IV IDH mutant (G4 IDHm) astrocytomas. For both tumor types, intratumoral heterogeneity is a key contributor to therapeutic failure. To better define this heterogeneity, genome-wide chromatin accessibility transcription profiles clinical samples G4 IDHm astrocytomas were analyzed at single-cell resolution. These...

10.1073/pnas.2210991120 article EN cc-by-nc-nd Proceedings of the National Academy of Sciences 2023-05-08
Coming Soon ...