Thomas Yu

ORCID: 0000-0002-5841-0198
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Advanced MRI Techniques and Applications
  • Advanced Neuroimaging Techniques and Applications
  • Cancer Genomics and Diagnostics
  • Fetal and Pediatric Neurological Disorders
  • Bioinformatics and Genomic Networks
  • Natural Language Processing Techniques
  • Radiomics and Machine Learning in Medical Imaging
  • Machine Learning in Healthcare
  • Single-cell and spatial transcriptomics
  • Medical Imaging Techniques and Applications
  • Genetics, Bioinformatics, and Biomedical Research
  • Protein Degradation and Inhibitors
  • Multiple Myeloma Research and Treatments
  • Advanced Image Processing Techniques
  • Advanced Vision and Imaging
  • Scientific Computing and Data Management
  • Molecular Biology Techniques and Applications
  • Computational Drug Discovery Methods
  • Prostate Cancer Treatment and Research
  • Image and Signal Denoising Methods
  • Artificial Intelligence in Healthcare
  • Cancer Immunotherapy and Biomarkers
  • NMR spectroscopy and applications
  • Lung Cancer Treatments and Mutations
  • Health and Medical Research Impacts

Sage Bionetworks
2016-2025

École Polytechnique Fédérale de Lausanne
2019-2024

University of Glasgow
2024

Athinoula A. Martinos Center for Biomedical Imaging
2023

Arvinas (United States)
2023

Siemens (Switzerland)
2022

Centre d'Imagerie BioMedicale
2020-2021

University of Lausanne
2020-2021

Signal Processing (United States)
2021

Cornell University
2020

The AACR Project GENIE is an international data-sharing consortium focused on generating evidence base for precision cancer medicine by integrating clinical-grade genomic data with clinical outcome tens of thousands patients treated at multiple institutions worldwide. In conjunction the first public release from approximately 19,000 samples, we describe goals, structure, and standards report conclusions high-level analysis initial phase data. We also provide examples utility data, such as...

10.1158/2159-8290.cd-17-0151 article EN Cancer Discovery 2017-06-02
Daniel K. Wells Marit M. van Buuren Kristen K. Dang Vanessa M. Hubbard-Lucey Kathleen C. F. Sheehan and 95 more Katie M. Campbell Andrew Lamb Jeffrey P. Ward John Sidney Ana-Belén Blázquez Andrew J. Rech Jesse M. Zaretsky Begonya Comin-Anduix Alphonsus H. C. Ng William Chour Thomas Yu Hira Rizvi Jia M. Chen Patrice Manning Gabriela Steiner Xengie Doan Taha Merghoub Justin Guinney Adam Kolom Cheryl Selinsky Antoni Ribas Matthew D. Hellmann Nir Hacohen Alessandro Sette James R. Heath Nina Bhardwaj Fred Ramsdell Robert D. Schreiber Ton N. Schumacher Pia Kvistborg Nadine A. Defranoux Aly A. Khan Amit A. Lugade Ana Mijalkovic Lazic Angela Frentzen Arbel D. Tadmor Ariella Sasson Arjun A. Rao Baikang Pei Barbara Schrörs Beata Berent-Maoz Beatriz M. Carreno Bin Song Bjoern Peters Bo Li Brandon W. Higgs Brian J. Stevenson Christian Iseli Christopher A. Miller Christopher Morehouse Cornelis J.M. Melief Cristina Puig-Saus Daphne M. van Beek David Balli David Gfeller David Haussler Dirk Jäger Eduardo Cortes Ekaterina Esaulova Elham Sherafat Francisco Arcila Gábor Bartha Geng Liu George Coukos Guilhem Richard Chang Han Han Si Inka Zörnig Ioannis Xénarios Ion Măndoiu Irsan Kooi James Conway Jan H. Kessler Jason Greenbaum Jason Perera Jason Harris Jasreet Hundal Jennifer Shelton Jianmin Wang Jiaqian Wang Joel Greshock Jonathon Blake Joseph D. Szustakowski Julia Kodysh Juliet Forman Lei Wei Leo J. Lee Lorenzo F. Fanchi Maarten Slagter Maren Lang Markus S. Mueller Martin Löwer Mathias Vormehr Maxim N. Artyomov Michael Kuziora

10.1016/j.cell.2020.09.015 article EN publisher-specific-oa Cell 2020-10-01

Abstract International cancer registries make real-world genomic and clinical data available, but their joint analysis remains a challenge. AACR Project GENIE, an international registry collecting from 19 centers, makes >130,000 patients publicly available through the cBioPortal for Cancer Genomics (https://genie.cbioportal.org). For 25,000 patients, additional longitudinal data, including treatment outcome are being collected by GENIE Biopharma Collaborative using PRISSMM curation...

10.1158/0008-5472.can-23-0816 article EN cc-by-nc-nd Cancer Research 2023-09-05

<h3>Importance</h3> Mammography screening currently relies on subjective human interpretation. Artificial intelligence (AI) advances could be used to increase mammography accuracy by reducing missed cancers and false positives. <h3>Objective</h3> To evaluate whether AI can overcome interpretation limitations with a rigorous, unbiased evaluation of machine learning algorithms. <h3>Design, Setting, Participants</h3> In this diagnostic study conducted between September 2016 November 2017, an...

10.1001/jamanetworkopen.2020.0265 article EN cc-by-nc-nd JAMA Network Open 2020-03-02
Michael P. Menden Dennis Wang Mike J. Mason Bence Szalai Krishna C. Bulusu and 95 more Yuanfang Guan Thomas Yu Jaewoo Kang Minji Jeon Russ Wolfinger Tin Nguyen Mikhail Zaslavskiy Jordi Abante Barbara Schmitz Abecassis Nanne Aben Delasa Aghamirzaie Tero Aittokallio Farida S. Akhtari Bissan Al‐Lazikani Tanvir Alam Amin Allam Chad H. G. Allen Mariana Pelicano de Almeida Doaa Altarawy Vinícius M. Alves Alicia Amadoz Benedict Anchang Albert A. Antolín Jeremy R. Ash V. Aznar Wail Ba-Alawi Moeen Bagheri Vladimir B. Bajić G. C. Ball Pedro J. Ballester Delora Baptista Christopher Bare Mathilde Bateson Andreas Bender Denis Bertrand Bhagya K. Wijayawardena Keith A. Boroevich Evert Bosdriesz Salim Bougouffa Gergana Bounova Thomas Brouwer Barbara M. Bryant Manuel Calaza Alberto Calderone Stefano Calza Stephen J. Capuzzi José Carbonell‐Caballero Yichao Li Hannah Carter Luisa Castagnoli Remzi Çelebi Gianni Cesareni Hyeokyoon Chang Guocai Chen Hao Chen Huiyuan Chen Lijun Cheng Ariel Chernomoretz Davide Chicco Kwang‐Hyun Cho Sung‐Hwan Cho Daeseon Choi Jaejoon Choi Kwanghun Choi Min‐Soo Choi Martine De Cock Elizabeth A. Coker Isidro Cortés‐Ciriano Miklós Cserzö Cankut Çubuk Charles Curtis Dries Van Daele Cuong Cao Dang Tjeerd M. H. Dijkstra Joaquı́n Dopazo Sorin Drăghici Anastasios Drosou Michel Dumontier Friederike Ehrhart Fatma-Elzahraa Eid Mahmoud ElHefnawi Haitham Elmarakeby Bo van Engelen H. Billur Engin Iwan J. P. de Esch Chris T. Evelo André O. Falcão Sherif Farag Carlos Fernández-Lozano Kathleen M. Fisch Åsmund Flobak Chiara Fornari Amir Foroushani Donatien Chedom Fotso Denis Fourches

Abstract The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number possible combinations vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large combination dataset, consisting 11,576 experiments from 910 across 85 molecularly characterized cell lines, and results a DREAM Challenge evaluate computational strategies for...

10.1038/s41467-019-09799-2 article EN cc-by Nature Communications 2019-06-17
Ujjwal Baid Satyam Ghodasara Suyash Mohan Michel Bilello Evan Calabrese and 95 more Errol Colak Keyvan Farahani Jayashree Kalpathy-Cramer Felipe Kitamura Sarthak Pati Luciano M. Prevedello Jeffrey D. Rudie Chiharu Sako Russell T. Shinohara Timothy Bergquist Rong Chai J. Mark Eddy Julia Elliott Walter Reade Thomas Schaffter Thomas Yu Jiaxin Zheng Ahmed W. Moawad Luiz Otavio Coelho Olivia McDonnell Elka Miller Fanny Morón Mark Oswood Robert Shih Loizos Siakallis Yulia Bronstein James R. Mason Anthony F. Miller Gagandeep Choudhary Aanchal Agarwal Cristina Besada Jamal J. Derakhshan M.C. Diogo Daniel D. Do‐Dai Luciano Farage John L. Go Mohiuddin Hadi Virginia Hill Michael Iv David Joyner Christie M. Lincoln Eyal Lotan Asako Miyakoshi Mariana Sanchez-Montano Jaya Nath Xuan V. Nguyen Manal Nicolas‐Jilwan Johanna Ortiz Jiménez Kerem Öztürk Bojan Petrović Chintan Shah Lubdha M. Shah Manas Sharma Onur Simsek Achint K. Singh Salil Soman Volodymyr Statsevych Brent D. Weinberg Robert J. Young Ichiro Ikuta Amit Agarwal Sword C. Cambron Richard Silbergleit Alexandru Dusoi Alida A. Postma Laurent Létourneau‐Guillon Gloria Guzmán Atin Saha Neetu Soni Greg Zaharchuk Vahe M. Zohrabian Yingming Chen Miloš Cekić AKM Fazlur Rahman Juan E. Small Varun Sethi Christos Davatzikos John Mongan Christopher P. Hess Soonmee Cha Javier Villanueva-Meyer John Freymann Justin Kirby Benedikt Wiestler Priscila Crivellaro Rivka R. Colen Aikaterini Kotrotsou Daniel C. Marcus Mikhail Milchenko Arash Nazeri Hassan M. Fathallah‐Shaykh Roland Wiest András Jakab Marc‐André Weber Abhishek Mahajan

The BraTS 2021 challenge celebrates its 10th anniversary and is jointly organized by the Radiological Society of North America (RSNA), American Neuroradiology (ASNR), Medical Image Computing Computer Assisted Interventions (MICCAI) society. Since inception, has been focusing on being a common benchmarking venue for brain glioma segmentation algorithms, with well-curated multi-institutional multi-parametric magnetic resonance imaging (mpMRI) data. Gliomas are most primary malignancies central...

10.48550/arxiv.2107.02314 preprint EN cc-by arXiv (Cornell University) 2021-01-01
Kurt G. Schilling François Rheault Laurent Petit Colin B. Hansen Vishwesh Nath and 95 more Fang‐Cheng Yeh Gabriel Girard Muhamed Baraković Jonathan Rafael‐Patiño Thomas Yu Elda Fischi‐Gomez Marco Pizzolato Mario Ocampo‐Pineda Simona Schiavi Erick J. Canales‐Rodríguez Alessandro Daducci Cristina Granziera Giorgio M. Innocenti Jean‐Philippe Thiran Laura Mancini Stephen Wastling Sirio Cocozza Maria Petracca Giuseppe Pontillo Matteo Mancini Sjoerd B. Vos Vejay N. Vakharia John S. Duncan Helena Melero Lidia Manzanedo Emilio Sanz‐Morales Ángel Peña-Melián Fernando Calamante Arnaud Attyé Ryan P. Cabeen Laura Korobova Arthur W. Toga Anupa A. Vijayakumari Drew Parker Ragini Verma Ahmed Radwan Stefan Sunaert Louise Emsell Alberto De Luca Alexander Leemans Claude J. Bajada Hamied Haroon Hojjatollah Azadbakht Maxime Chamberland Sila Genc Chantal M. W. Tax Ping-Hong Yeh Rujirutana Srikanchana Colin D. McKnight Joseph Yang Jian Chen Claire E. Kelly Chun‐Hung Yeh Jérôme Cochereau Jerome J. Maller Thomas Welton Fabien Almairac Kiran K. Seunarine Chris A. Clark Fan Zhang Nikos Makris Alexandra J. Golby Yogesh Rathi Lauren J. O’Donnell Yihao Xia Dogu Baran Aydogan Yonggang Shi Francisco Guerreiro Fernandes Mathijs Raemaekers Shaun Warrington Stijn Michielse Alonso Ramírez-Manzanares Luis Concha Ramón Aranda Mariano Rivera Meraz Garikoitz Lerma‐Usabiaga Lucas Agudiez Roitman Lucius S. Fekonja Navona Calarco Michael Joseph Hajer Nakua Aristotle N. Voineskos Philippe Karan Gabrielle Grenier Jon Haitz Legarreta Nagesh Adluru Veena A. Nair Vivek Prabhakaran Andrew L. Alexander Koji Kamagata Yuya Saito Wataru Uchida Christina Andica Masahiro Abe Roza G. Bayrak

White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white pathways in vivo human brains. However, like other analyses complex data, there is considerable variability protocols and techniques. This can result different reconstructions same intended pathways, which directly affects results, quantification, interpretation. In this study, we aim evaluate quantify that arises from for segmentation. Through an open call users...

10.1016/j.neuroimage.2021.118502 article EN cc-by-nc-nd NeuroImage 2021-08-22
Justin Guinney Tao Wang Teemu D. Laajala Kimberly Kanigel Winner J Christopher Bare and 95 more Elias Chaibub Neto Suleiman A. Khan Peddinti Gopalacharyulu Antti Airola Tapio Pahikkala Tuomas Mirtti Thomas Yu Brian M. Bot Liji Shen Kald Abdallah Thea Norman Stephen Friend Gustavo Stolovitzky Howard R. Soule Christopher J. Sweeney Charles J. Ryan Howard I. Scher Oliver Sartor Yang Xie Tero Aittokallio Fang Liz Zhou James C. Costello Kald Abdallah Tero Aittokallio Antti Airola Catalina Anghe Helia Azima Robert Baertsch Pedro J. Ballester Chris Bare Vinayak Bhandari Brian M. Bot Cuong Cao Dang Maria Bekker‐Nielsen Dunbar Ann‐Sophie Buchardt Ljubomir Buturović Da Cao Prabhakar Chalise Junwoo Cho Tzu‐Ming Chu R. Yates Coley Sailesh Conjeti Sara Correia James C. Costello Ziwei Dai Junqiang Dai Philip Dargatz Sam Delavarkhan Detian Deng Ankur Dhanik Yu Du Aparna Elangovan Shellie D. Ellis Laura L. Elo Shadrielle M. G. Espiritu Fan Fan Ashkan B Farshi Ana Alão Freitas Brooke L. Fridley Stephen Friend Christiane Fuchs Eyal Gofer Gopalacharyulu Peddinti Stefan Graw Russ Greiner Yuanfang Guan Justin Guinney Guo Jing Pankaj Gupta Anna I Guyer Jiawei Han Niels Richard Hansen Billy HW Chang Outi Hirvonen Barbara Huang Chao Huang Jinseub Hwang Joseph G. Ibrahim Vivek Jayaswa Jouhyun Jeon Zhicheng Ji Deekshith Juvvadi Sirkku Jyrkkiö Kimberly Kanigel-Winner Amin Katouzian Marat D. Kazanov Suleiman A. Khan Shahin Khayyer Dalho Kim Agnieszka Kitlas Golińska Devin C. Koestler Fernanda Kokowicz Pilatti Ivan Kondofersky Norbert Krautenbacher Damjan Krstajić

10.1016/s1470-2045(16)30560-5 article EN The Lancet Oncology 2016-11-16

Identification of pregnancies at risk preterm birth (PTB), the leading cause newborn deaths, remains challenging given syndromic nature disease. We report a longitudinal multi-omics study coupled with DREAM challenge to develop predictive models PTB. The findings indicate that whole-blood gene expression predicts ultrasound-based gestational ages in normal and complicated (r = 0.83) and, using data collected before 37 weeks gestation, also delivery date both 0.86) those spontaneous 0.75)....

10.1016/j.xcrm.2021.100323 article EN cc-by-nc-nd Cell Reports Medicine 2021-06-01

The American Association for Cancer Research (AACR) Project Genomics Evidence Neoplasia Information Exchange (GENIE) is an international pan-cancer registry with the goal to inform cancer research and clinical care worldwide. Founded in late 2015, milestone GENIE 9.1-public release contains data from >110,000 tumors >100,000 people treated at 19 centers United States, Canada, Kingdom, France, Netherlands, Spain. Here, we demonstrate use of these real-world data, harmonized through a...

10.1158/2159-8290.cd-21-1547 article EN cc-by-nc-nd Cancer Discovery 2022-07-12

Abstract: Although activation of brain catecholaminergic systems has been implicated in the cerebrovascular and metabolic changes during subarachnoid hemorrhage, cerebral ischemia, cortical ablation, freeze lesions, little is known response regional catecholamine to traumatic injury. The present study was designed characterize temporal concentrations norepinephrine (NE), dopamine (DA), epinephrine (E) discrete regions following experimental fluid‐percussion injury rats. Anesthetized rats...

10.1046/j.1471-4159.1994.63041426.x article EN Journal of Neurochemistry 1994-10-01

The recent advent of CRISPR and other molecular tools enabled the reconstruction cell lineages based on induced DNA mutations promises to solve ones more complex organisms. To date, no lineage algorithms have been rigorously examined for their performance robustness across dataset types number cells. benchmark such methods, we decided organize a DREAM challenge using in vitro experimental intMEMOIR recordings silico data C. elegans tree about 1,000 cells Mus musculus 10,000 Some 22...

10.1016/j.cels.2021.05.008 article EN cc-by-nc-nd Cell Systems 2021-06-18

Limitations in the accuracy of brain pathways reconstructed by diffusion MRI (dMRI) tractography have received considerable attention. While technical advances spearheaded Human Connectome Project (HCP) led to significant improvements dMRI data quality, it remains unclear how these should be analyzed maximize accuracy. Over a period two years, we engaged community IronTract Challenge, which aims answer this question leveraging unique dataset. Macaque brains that both tracer injections and ex...

10.1016/j.neuroimage.2022.119327 article EN cc-by-nc-nd NeuroImage 2022-05-26

Predictive biomarkers of immune checkpoint inhibitor (ICI) efficacy are currently lacking for non-small cell lung cancer (NSCLC). Here, we describe the results from Anti-PD-1 Response Prediction DREAM Challenge, a crowdsourced initiative that enabled assessment predictive models by using data two randomized controlled clinical trials (RCTs) ICIs in first-line metastatic NSCLC.

10.1186/s12967-023-04705-3 article EN cc-by Journal of Translational Medicine 2024-02-21

Abstract Deep proteomics profiling using labeled LC-MS/MS experiments has been proven to be powerful study complex diseases. However, due the dynamic nature of discovery mass spectrometry, generated data contain a substantial fraction missing values. This poses great challenges for analyses, as many tools, especially those high dimensional data, cannot deal with values directly. To address this problem, NCI-CPTAC Proteogenomics DREAM Challenge was carried out develop effective imputation...

10.1101/2020.07.21.214205 preprint EN cc-by-nc-nd bioRxiv (Cold Spring Harbor Laboratory) 2020-07-22

While the past decade has seen meaningful improvements in clinical outcomes for multiple myeloma patients, a subset of patients does not benefit from current therapeutics unclear reasons. Many gene expression-based models risk have been developed, but each model uses different combination genes and often involves assaying many making them difficult to implement. We organized Multiple Myeloma DREAM Challenge, crowdsourced effort develop rapid progression newly diagnosed benchmark these...

10.1038/s41375-020-0742-z article EN cc-by Leukemia 2020-02-14

Abstract We evaluate deconvolution methods, which infer levels of immune infiltration from bulk expression tumor samples, through a community-wide DREAM Challenge. assess six published and 22 community-contributed methods using in vitro silico transcriptional profiles admixed cancer healthy cells. Several predict most cell types well, though they either were not trained to all functional CD8+ T states or do so with low accuracy. address this gap, including deep learning-based approach, whose...

10.1038/s41467-024-50618-0 article EN cc-by Nature Communications 2024-08-27

PURPOSE The American Association for Cancer Research Project Genomics Evidence Neoplasia Information Exchange Biopharma Collaborative is a multi-institution effort to build pan-cancer repository of genomic and clinical data curated from the electronic health record. For research community be confident that extracted record text are reliable, transparency approach used ensure quality essential. MATERIALS AND METHODS Four institutions participating in AACR's GENIE created an observational...

10.1200/cci.21.00105 article EN cc-by JCO Clinical Cancer Informatics 2022-02-22

Recovering the T2 distribution from multi-echo magnetic resonance (MR) signals is challenging but has high potential as it provides biomarkers characterizing tissue micro-structure, such myelin water fraction (MWF). In this work, we propose to combine machine learning and aspects of parametric (fitting MRI signal using biophysical models) non-parametric (model-free fitting signal) approaches relaxometry in brain by a multi-layer perceptron (MLP) for reconstruction. For training our network,...

10.1016/j.media.2020.101940 article EN cc-by-nc-nd Medical Image Analysis 2020-12-18

The accurate identification and quantitation of RNA isoforms present in the cancer transcriptome is key for analyses ranging from inference impacts somatic variants to pathway analysis biomarker development subtype discovery. ICGC-TCGA DREAM Somatic Mutation Calling (SMC-RNA) challenge was a crowd-sourced effort benchmark methods isoform quantification fusion detection bulk sequencing (RNA-seq) data. It concluded 2018 with comparison 77 entries 65 on 51 synthetic tumors 32 cell lines...

10.1016/j.cels.2021.05.021 article EN cc-by Cell Systems 2021-06-18

Multi-component T2 relaxometry allows probing tissue microstructure by assessing compartment-specific relaxation times and water fractions, including the myelin fraction. Non-negative least squares (NNLS) with zero-order Tikhonov regularization is conventional method for estimating smooth distributions. Despite improved estimation provided this compared to non-regularized NNLS, solution still sensitive underlying noise weight. This especially relevant clinically achievable signal-to-noise...

10.1016/j.media.2021.101959 article EN cc-by-nc-nd Medical Image Analysis 2021-01-09

<h3>Importance</h3> An automated, accurate method is needed for unbiased assessment quantifying accrual of joint space narrowing and erosions on radiographic images the hands wrists, feet clinical trials, monitoring damage over time, assisting rheumatologists with treatment decisions. Such a has potential to be directly integrated into electronic health records. <h3>Objectives</h3> To design implement an international crowdsourcing competition catalyze development machine learning methods...

10.1001/jamanetworkopen.2022.27423 article EN cc-by-nc-nd JAMA Network Open 2022-08-29
Coming Soon ...