Seth Pree

ORCID: 0000-0003-1917-3166
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Dark Matter and Cosmic Phenomena
  • Astrophysics and Cosmic Phenomena
  • Solar and Space Plasma Dynamics
  • Plasma Diagnostics and Applications
  • Plasma Applications and Diagnostics
  • Laser-Plasma Interactions and Diagnostics
  • Advanced Thermodynamic Systems and Engines
  • Radiation Therapy and Dosimetry
  • Laser-induced spectroscopy and plasma
  • Quantum, superfluid, helium dynamics
  • Magnetic and Electromagnetic Effects
  • Atmospheric Ozone and Climate
  • Laser Design and Applications
  • Ionosphere and magnetosphere dynamics
  • Geomagnetism and Paleomagnetism Studies
  • Neutrino Physics Research
  • Astro and Planetary Science
  • Icing and De-icing Technologies
  • Underwater Acoustics Research
  • Atomic and Molecular Physics
  • Nuclear Physics and Applications
  • Fluid Dynamics and Turbulent Flows
  • Combustion and flame dynamics
  • Microfluidic and Bio-sensing Technologies
  • Dust and Plasma Wave Phenomena

University of Groningen
2019-2023

University of California, Los Angeles
2014-2023

California Institute of Technology
2023

Institute of High Energy Physics
2016-2018

Chinese Academy of Sciences
2016-2018

Middle East Technical University
2018

A precision measurement by AMS of the antiproton flux and antiproton-to-proton ratio in primary cosmic rays absolute rigidity range from 1 to 450 GV is presented based on 3.49×10^{5} events 2.42×10^{9} proton events. The fluxes ratios charged elementary particles are also presented. In ∼60 ∼500 GV, p[over ¯], p, positron e^{+} found have nearly identical dependence electron e^{-} exhibits a different dependence. Below 60 (p[over ¯]/p), ¯]/e^{+}), (p/e^{+}) each reaches maximum. From show no...

10.1103/physrevlett.117.091103 article EN cc-by Physical Review Letters 2016-08-26

The Alpha Magnetic Spectrometer (AMS) is a precision particle physics detector on the International Space Station (ISS) conducting unique, long-duration mission of fundamental research in space. objectives include precise studies origin dark matter, antimatter, and cosmic rays as well exploration new phenomena. Following 16-year period construction testing, precursor flight Shuttle, AMS was installed ISS May 19, 2011. In this report we present results based 120 billion charged ray events up...

10.1016/j.physrep.2020.09.003 article EN cc-by-nc-nd Physics Reports 2020-09-19

Knowledge of the rigidity dependence boron to carbon flux ratio (B/C) is important in understanding propagation cosmic rays. The precise measurement B/C from 1.9 GV 2.6 TV, based on 2.3 million and 8.3 nuclei collected by AMS during first 5 years operation, presented. detailed variation with spectral index reported for time. does not show any significant structures contrast many ray models that require such at high rigidities. Remarkably, above 65 GV, well described a single power law R^{Δ}...

10.1103/physrevlett.117.231102 article EN cc-by Physical Review Letters 2016-11-28

We report the observation of new properties primary cosmic rays He, C, and O measured in rigidity (momentum/charge) range 2 GV to 3 TV with 90×10^{6} helium, 8.4×10^{6} carbon, 7.0×10^{6} oxygen nuclei collected by Alpha Magnetic Spectrometer (AMS) during first five years operation. Above 60 GV, these three spectra have identical dependence. They all deviate from a single power law above 200 harden an way.

10.1103/physrevlett.119.251101 article EN cc-by Physical Review Letters 2017-12-18

Precision measurements of cosmic ray positrons are presented up to 1 TeV based on 1.9 million collected by the Alpha Magnetic Spectrometer International Space Station. The positron flux exhibits complex energy dependence. Its distinctive properties (a) a significant excess starting from 25.2±1.8 GeV compared lower-energy, power-law trend, (b) sharp dropoff above 284+91−64 GeV, (c) in entire range is well described sum term associated with produced collision rays, which dominates at low...

10.1103/physrevlett.122.041102 article EN cc-by Physical Review Letters 2019-01-29

We report on the observation of new properties secondary cosmic rays Li, Be, and B measured in rigidity (momentum per unit charge) range 1.9 GV to 3.3 TV with a total 5.4×10^{6} nuclei collected by AMS during first five years operation aboard International Space Station. The Li fluxes have an identical dependence above 7 all three 30 Li/Be flux ratio 2.0±0.1. deviate from single power law 200 way. This behavior has also been observed measurement primary He, C, O but dependences are...

10.1103/physrevlett.120.021101 article EN cc-by Physical Review Letters 2018-01-11

Precision results on cosmic-ray electrons are presented in the energy range from 0.5 GeV to 1.4 TeV based $28.1\ifmmode\times\else\texttimes\fi{}{10}^{6}$ collected by Alpha Magnetic Spectrometer International Space Station. In entire electron and positron spectra have distinctly different magnitudes dependences. The flux exhibits a significant excess starting $42.{1}_{\ensuremath{-}5.2}^{+5.4}\text{ }\text{ }\mathrm{GeV}$ compared lower trends, but nature of this is above...

10.1103/physrevlett.122.101101 article EN cc-by Physical Review Letters 2019-03-13

We present the precision measurement from May 2011 to 2017 (79 Bartels rotations) of proton fluxes at rigidities 1 60 GV and helium 1.9 based on a total 1×10^{9} events collected with Alpha Magnetic Spectrometer aboard International Space Station. This is in solar cycle 24, which has maximum April 2014. observed that, below 40 GV, flux show nearly identical fine structures both time relative amplitude. The amplitudes decrease increasing rigidity vanish above GV. are reduced during period,...

10.1103/physrevlett.121.051101 article EN cc-by Physical Review Letters 2018-07-31

We report the observation of new properties primary iron (Fe) cosmic rays in rigidity range 2.65 GV to 3.0 TV with 0.62×106 nuclei collected by Alpha Magnetic Spectrometer experiment on International Space Station. Above 80.5 dependence ray Fe flux is identical He, C, and O fluxes, Fe/O ratio being constant at 0.155±0.006. This shows that unexpectedly belong same class which different from Ne, Mg, Si class.Received 2 October 2020Revised 22 November 2020Accepted 9 December...

10.1103/physrevlett.126.041104 article EN cc-by Physical Review Letters 2021-01-28

We present high-statistics, precision measurements of the detailed time and energy dependence primary cosmic-ray electron flux positron over 79 Bartels rotations from May 2011 to 2017 in range 1 50 GeV. For first time, charge-sign dependent modulation during solar maximum has been investigated detail by leptons alone. Based on 23.5×10^{6} events, we report observation short-term structures timescale months coincident both flux. These are not visible e^{+}/e^{-} ratio. The across polarity...

10.1103/physrevlett.121.051102 article EN cc-by Physical Review Letters 2018-07-31

A precision measurement of the nitrogen flux with rigidity (momentum per unit charge) from 2.2 GV to 3.3 TV based on 2.2×10^{6} events is presented. The detailed dependence spectral index presented for first time. rapidly hardens at high rigidities and becomes identical indices primary He, C, O cosmic rays above ∼700 GV. We observed that Φ_{N} can be as sum its component Φ_{N}^{P} secondary Φ_{N}^{S}, Φ_{N}=Φ_{N}^{P}+Φ_{N}^{S}, we found well described by weighted oxygen Φ_{O} (primary rays)...

10.1103/physrevlett.121.051103 article EN cc-by Physical Review Letters 2018-07-31

We report the observation of new properties primary cosmic rays, neon (Ne), magnesium (Mg), and silicon (Si), measured in rigidity range 2.15 GV to 3.0 TV with 1.8×10^{6} Ne, 2.2×10^{6} Mg, 1.6×10^{6} Si nuclei collected by Alpha Magnetic Spectrometer experiment on International Space Station. The Ne Mg spectra have identical dependence above 3.65 GV. three 86.5 GV, deviate from a single power law 200 harden an way. Unexpectedly, rays is different He, C, O. This shows that O are two classes rays.

10.1103/physrevlett.124.211102 article EN cc-by Physical Review Letters 2020-05-29

We present the precision measurement of daily proton fluxes in cosmic rays from May 20, 2011 to October 29, 2019 (a total 2824 days or 114 Bartels rotations) rigidity interval 1 100 GV based on 5.5×10^{9} protons collected with Alpha Magnetic Spectrometer aboard International Space Station. The exhibit variations multiple timescales. From 2014 2018, we observed recurrent flux a period 27 days. Shorter periods 9 and 13.5 are 2016. strength all three periodicities changes time rigidity....

10.1103/physrevlett.127.271102 article EN cc-by Physical Review Letters 2021-12-27

Precision measurements by the Alpha Magnetic Spectrometer (AMS) on International Space Station of ^{3}He and ^{4}He fluxes are presented. The based 100 million nuclei in rigidity range from 2.1 to 21 GV 18 1.9 15 collected May 2011 November 2017. We observed that exhibit nearly identical variations with time. relative magnitude decreases increasing rigidity. dependence ^{3}He/^{4}He flux ratio is measured for first Below 4 GV, was found have a significant long-term time dependence. Above be...

10.1103/physrevlett.123.181102 article EN cc-by Physical Review Letters 2019-11-01

We present the precision measurement of 2824 daily helium fluxes in cosmic rays from May 20, 2011 to October 29, 2019 rigidity interval 1.71 100 GV based on 7.6×10^{8} nuclei collected with Alpha Magnetic Spectrometer (AMS) aboard International Space Station. The flux and proton ratio exhibit variations multiple timescales. In nearly all time intervals 2014 2018, we observed recurrent a period 27 days. Shorter periods 9 days 13.5 are 2016. strength three periodicities changes rigidity....

10.1103/physrevlett.128.231102 article EN cc-by Physical Review Letters 2022-06-10

We present the precision measurements of 11 years daily cosmic electron fluxes in rigidity interval from 1.00 to 41.9 GV based on 2.0×10^{8} electrons collected with Alpha Magnetic Spectrometer (AMS) aboard International Space Station. The exhibit variations multiple timescales. Recurrent flux periods 27 days, 13.5 and 9 days are observed. find that show distinctly different time proton fluxes. Remarkably, a hysteresis between is observed significance greater than 6σ at rigidities below 8.5...

10.1103/physrevlett.130.161001 article EN cc-by Physical Review Letters 2023-04-17

Precise knowledge of the charge and rigidity dependence secondary cosmic ray fluxes secondary-to-primary flux ratios is essential in understanding propagation. We report properties heavy fluorine F R range 2.15 GV to 2.9 TV based on 0.29 million events collected by Alpha Magnetic Spectrometer experiment International Space Station. The spectrum deviates from a single power law above 200 GV. heavier F/Si ratio distinctly different lighter B/O (or B/C) dependence. In particular, 10 GV, F/SiB/O...

10.1103/physrevlett.126.081102 article EN cc-by Physical Review Letters 2021-02-25

We report the properties of sodium (Na) and aluminum (Al) cosmic rays in rigidity range 2.15 GV to 3.0 TV based on 0.46 million 0.51 nuclei collected by Alpha Magnetic Spectrometer experiment International Space Station. found that Na Al, together with nitrogen (N), belong a distinct ray group. In this group, we observe that, similar N flux, both flux Al are well described sums primary component (proportional silicon flux) secondary fluorine flux). The fraction increases for N, Na, fluxes...

10.1103/physrevlett.127.021101 article EN cc-by Physical Review Letters 2021-07-07

We report the properties of primary cosmic-ray sulfur (S) in rigidity range 2.15 GV to 3.0 TV based on 0.38×10^{6} nuclei collected by Alpha Magnetic Spectrometer experiment (AMS). observed that above 90 dependence S flux is identical Ne-Mg-Si fluxes, which different from He-C-O-Fe fluxes. found that, similar N, Na, and Al cosmic rays, over entire range, traditional rays S, Ne, Mg, C all have sizeable secondary components, Mg fluxes are well described weighted sum silicon fluorine flux,...

10.1103/physrevlett.130.211002 article EN cc-by Physical Review Letters 2023-05-25

Views Icon Article contents Figures & tables Video Audio Supplementary Data Peer Review Share Twitter Facebook Reddit LinkedIn Tools Reprints and Permissions Cite Search Site Citation A. Bataller, J. Koulakis, S. Pree, Putterman; Nanosecond high-power dense microplasma switch for visible light. Appl. Phys. Lett. 1 December 2014; 105 (22): 223501. https://doi.org/10.1063/1.4902914 Download citation file: Ris (Zotero) Reference Manager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex...

10.1063/1.4902914 article EN Applied Physics Letters 2014-12-01

Convection in radial force fields is a fundamental process behind weather on Earth and the Sun, as well magnetic dynamo action both. Until now, benchtop experiments have been unable to study convection due inability generate forces of sufficient strength. Recently, it has appreciated that sound, when averaged over many cycles, exerts density gradients gas travels through. The acoustic radiation pressure thermal draws cooler regions with large time-averaged velocity can be modeled an...

10.1103/physrevlett.130.034002 article EN Physical Review Letters 2023-01-20

Sound can hold partially ionized sulfur at the center of a spherical bulb. We use plasma itself to drive 180 dB re 20 $\ensuremath{\mu}\mathrm{Pa}$ sound wave by periodically heating it with microwave pulses frequency that matches lowest order, spherically symmetric, acoustic resonance To clarify trapping mechanism, we generalize radiation pressure theory include gaseous inhomogeneities and find an interaction high-amplitude density gradients in gas through which propagates. This is...

10.1103/physreve.98.043103 article EN publisher-specific-oa Physical review. E 2018-10-12

We study the formation of micron-sized spark discharges in high-pressure xenon on nanosecond time scale. The spark's energy per length is measured through expansion dynamics generated shock wave, and observed to scale linearly with radius. At same time, surface temperature channel remains constant. Together, these observations allow us conclude that channel, up 40 μm overall radius, actually an energetically hollow shell about 20 thick. Further, nucleus 15 eV, independent size density. To...

10.1103/physrevlett.117.085001 article EN publisher-specific-oa Physical Review Letters 2016-08-19

A PIN-diode-based 1D x-ray camera and a scintillator-based camera, both with microsecond to submicrosecond time resolution, have been developed perform time-resolved imaging of transient, low-intensity, suprathermal x-rays associated magnetohydrodynamic instabilities disrupting plasma jet. These cameras high detection efficiency over broad band, wide field view, the capability produce >50 frames ≤1 μs resolution. The images are formed by pinhole or coded aperture placed outside vacuum...

10.1063/5.0122760 article EN publisher-specific-oa Review of Scientific Instruments 2023-01-01
Coming Soon ...