- Particle physics theoretical and experimental studies
- Quantum Chromodynamics and Particle Interactions
- High-Energy Particle Collisions Research
- Dark Matter and Cosmic Phenomena
- High voltage insulation and dielectric phenomena
- Astrophysics and Cosmic Phenomena
- Power Transformer Diagnostics and Insulation
- Particle Detector Development and Performance
- Neutrino Physics Research
- Solar and Space Plasma Dynamics
- Atomic and Subatomic Physics Research
- Ionosphere and magnetosphere dynamics
- Earthquake Detection and Analysis
- Radiation Detection and Scintillator Technologies
- Electrostatic Discharge in Electronics
- Advanced Frequency and Time Standards
- Particle Accelerators and Free-Electron Lasers
- Superconducting Materials and Applications
- Lightning and Electromagnetic Phenomena
- Geomagnetism and Paleomagnetism Studies
- Astro and Planetary Science
- Non-Destructive Testing Techniques
- Nuclear Physics and Applications
- Gamma-ray bursts and supernovae
- Water Systems and Optimization
Istituto Nazionale di Fisica Nucleare, Sezione di Bologna
2016-2025
University of Bologna
2016-2025
University of Trieste
2007-2023
Istituto Nazionale di Fisica Nucleare, Trento Institute for Fundamental Physics And Applications
2023
University of Trento
2023
Fondazione Bruno Kessler
2023
Osservatorio astronomico di Bologna
2015-2018
Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati
1981-2017
Istituto Nazionale di Fisica Nucleare, Sezione di Napoli
1992-2017
UniNettuno University
2017
A precision measurement by the Alpha Magnetic Spectrometer on International Space Station of positron fraction in primary cosmic rays energy range from 0.5 to 350 GeV based $6.8\ifmmode\times\else\texttimes\fi{}{10}^{6}$ and electron events is presented. The very accurate data show that steadily increasing 10 $\ensuremath{\sim}250\text{ }\text{ }\mathrm{GeV}$, but, 20 250 GeV, slope decreases an order magnitude. spectrum shows no fine structure, ratio observable anisotropy. Together, these...
A precise measurement of the proton flux in primary cosmic rays with rigidity (momentum/charge) from 1 GV to 1.8 TV is presented based on 300 million events. Knowledge dependence important understanding origin, acceleration, and propagation rays. We present detailed variation spectral index for first time. The progressively hardens at high rigidities.Received 6 March 2015DOI:https://doi.org/10.1103/PhysRevLett.114.171103This article available under terms Creative Commons Attribution 3.0...
A combination is presented of the inclusive deep inelastic cross sections measured by H1 and ZEUS Collaborations in neutral charged current unpolarised ep scattering at HERA during period 1994-2000. The data span six orders magnitude negative four-momentum-transfer squared, Q^2, Bjorken x. method used takes correlations systematic uncertainties into account, resulting an improved accuracy. combined are sole input a NLO QCD analysis which determines new set parton distributions, HERAPDF1.0,...
Measurements of the positron fraction in high energy cosmic rays using space-borne Alpha Magnetic Spectrometer have been extended to energies 500 GeV. The new results show that stops increasing with at around 200
Precision measurements by the Alpha Magnetic Spectrometer on International Space Station of primary cosmic-ray electron flux in range 0.5 to 700 GeV and positron 500 are presented. The each require a description beyond single power-law spectrum. Both change their behavior at ∼30 but fluxes significantly different magnitude energy dependence. Between 20 200 spectral index is harder than index. determination differing indices versus new observation provides important information origins...
Knowledge of the precise rigidity dependence helium flux is important in understanding origin, acceleration, and propagation cosmic rays. A measurement primary rays with (momentum/charge) from 1.9 GV to 3 TV based on 50 million events presented compared proton flux. The detailed variation spectral index for first time. progressively hardens at rigidities larger than 100 GV. similar that though magnitudes are different. Remarkably, ratio increases up 45 then becomes constant; above well...
A precision measurement by AMS of the antiproton flux and antiproton-to-proton ratio in primary cosmic rays absolute rigidity range from 1 to 450 GV is presented based on 3.49×10^{5} events 2.42×10^{9} proton events. The fluxes ratios charged elementary particles are also presented. In ∼60 ∼500 GV, p[over ¯], p, positron e^{+} found have nearly identical dependence electron e^{-} exhibits a different dependence. Below 60 (p[over ¯]/p), ¯]/e^{+}), (p/e^{+}) each reaches maximum. From show no...
The Alpha Magnetic Spectrometer (AMS) is a precision particle physics detector on the International Space Station (ISS) conducting unique, long-duration mission of fundamental research in space. objectives include precise studies origin dark matter, antimatter, and cosmic rays as well exploration new phenomena. Following 16-year period construction testing, precursor flight Shuttle, AMS was installed ISS May 19, 2011. In this report we present results based 120 billion charged ray events up...
Knowledge of the rigidity dependence boron to carbon flux ratio (B/C) is important in understanding propagation cosmic rays. The precise measurement B/C from 1.9 GV 2.6 TV, based on 2.3 million and 8.3 nuclei collected by AMS during first 5 years operation, presented. detailed variation with spectral index reported for time. does not show any significant structures contrast many ray models that require such at high rigidities. Remarkably, above 65 GV, well described a single power law R^{Δ}...
A measurement of the cosmic ray positron fraction e+/(e++e−) in energy range 1–30 GeV is presented. The based on data taken by AMS-01 experiment during its 10 day Space Shuttle flight June 1998. proton background suppression order 106 reached identifying converted bremsstrahlung photons emitted from positrons.
We report the observation of new properties primary cosmic rays He, C, and O measured in rigidity (momentum/charge) range 2 GV to 3 TV with 90×10^{6} helium, 8.4×10^{6} carbon, 7.0×10^{6} oxygen nuclei collected by Alpha Magnetic Spectrometer (AMS) during first five years operation. Above 60 GV, these three spectra have identical dependence. They all deviate from a single power law above 200 harden an way.
We present a measurement of the cosmic ray (e^{+}+e^{-}) flux in range 0.5 GeV to 1 TeV based on analysis 10.6 million events collected by AMS. The statistics and resolution AMS provide precision flux. is smooth reveals new distinct information. Above 30.2 GeV, can be described single power law with spectral index γ=-3.170±0.008(stat+syst)±0.008(energy scale).
Precision measurements of cosmic ray positrons are presented up to 1 TeV based on 1.9 million collected by the Alpha Magnetic Spectrometer International Space Station. The positron flux exhibits complex energy dependence. Its distinctive properties (a) a significant excess starting from 25.2±1.8 GeV compared lower-energy, power-law trend, (b) sharp dropoff above 284+91−64 GeV, (c) in entire range is well described sum term associated with produced collision rays, which dominates at low...
We report on the observation of new properties secondary cosmic rays Li, Be, and B measured in rigidity (momentum per unit charge) range 1.9 GV to 3.3 TV with a total 5.4×10^{6} nuclei collected by AMS during first five years operation aboard International Space Station. The Li fluxes have an identical dependence above 7 all three 30 Li/Be flux ratio 2.0±0.1. deviate from single power law 200 way. This behavior has also been observed measurement primary He, C, O but dependences are...
Precision results on cosmic-ray electrons are presented in the energy range from 0.5 GeV to 1.4 TeV based $28.1\ifmmode\times\else\texttimes\fi{}{10}^{6}$ collected by Alpha Magnetic Spectrometer International Space Station. In entire electron and positron spectra have distinctly different magnitudes dependences. The flux exhibits a significant excess starting $42.{1}_{\ensuremath{-}5.2}^{+5.4}\text{ }\text{ }\mathrm{GeV}$ compared lower trends, but nature of this is above...
We present results over an 11-year Solar cycle of cosmic antiprotons based on <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mn>1.1</a:mn><a:mo>×</a:mo><a:msup><a:mn>10</a:mn><a:mn>6</a:mn></a:msup></a:math> events in the rigidity range from 1.00 to 41.9 GV. The <c:math xmlns:c="http://www.w3.org/1998/Math/MathML" display="inline"><c:mover accent="true"><c:mi>p</c:mi><c:mo stretchy="false">¯</c:mo></c:mover></c:math> fluxes exhibit distinct properties. magnitude...
This paper deals with digital acquisition, classification and analysis of the stochastic features random pulse signals generated by partial discharge (PD) phenomena. Focus is made on a new measuring system for acquisition PD-pulse signals, which operates at sampling rate high enough to avoid frequency aliasing, but that provides an amount PD pulses enables analysis. A separation method, based fuzzy classifier, developed acquired shape signals. The result cluster homogeneous in terms pulses....
The production of D+- and D0 mesons has been measured with the ZEUS detector at HERA using an integrated luminosity 133.6 pb-1. measurements cover kinematic range 5 < Q^2 1000 GeV^2, 0.02 y 0.7, 1.5 p_T^D 15 GeV eta^D 1.6. Combinatorial background to D meson signals is reduced by microvertex reconstruct displaced secondary vertices. Production cross sections are compared predictions next-to-leading-order QCD which found describe data well. Measurements extrapolated full phase space in order...