M. Gervasi

ORCID: 0000-0003-3884-0905
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Solar and Space Plasma Dynamics
  • Dark Matter and Cosmic Phenomena
  • Astrophysics and Cosmic Phenomena
  • Radio Astronomy Observations and Technology
  • Superconducting and THz Device Technology
  • Cosmology and Gravitation Theories
  • Ionosphere and magnetosphere dynamics
  • Atmospheric Ozone and Climate
  • Geophysics and Gravity Measurements
  • Astronomy and Astrophysical Research
  • Geomagnetism and Paleomagnetism Studies
  • Astronomical Observations and Instrumentation
  • Galaxies: Formation, Evolution, Phenomena
  • Calibration and Measurement Techniques
  • Scientific Research and Discoveries
  • Solar Radiation and Photovoltaics
  • Astro and Planetary Science
  • Silicon and Solar Cell Technologies
  • Radiation Therapy and Dosimetry
  • solar cell performance optimization
  • Spacecraft and Cryogenic Technologies
  • Stellar, planetary, and galactic studies
  • Adaptive optics and wavefront sensing
  • Atomic and Subatomic Physics Research
  • Earthquake Detection and Analysis

University of Milano-Bicocca
2015-2024

Istituto Nazionale di Fisica Nucleare, Sezione di Milano Bicocca
2015-2024

Istituto Nazionale di Fisica Nucleare
2007-2024

The University of Tokyo
2018-2024

Biogen (United States)
2024

High Energy Accelerator Research Organization
2024

Istituto Nazionale di Fisica Nucleare, Laboratori Acceleratori e Superconduttività Applicata
2017-2023

Ca' Foscari University of Venice
2023

University of Milan
2003-2023

Campbell Collaboration
2023

A precise measurement of the proton flux in primary cosmic rays with rigidity (momentum/charge) from 1 GV to 1.8 TV is presented based on 300 million events. Knowledge dependence important understanding origin, acceleration, and propagation rays. We present detailed variation spectral index for first time. The progressively hardens at high rigidities.Received 6 March 2015DOI:https://doi.org/10.1103/PhysRevLett.114.171103This article available under terms Creative Commons Attribution 3.0...

10.1103/physrevlett.114.171103 article EN cc-by Physical Review Letters 2015-04-30

Measurements of the positron fraction in high energy cosmic rays using space-borne Alpha Magnetic Spectrometer have been extended to energies 500 GeV. The new results show that stops increasing with at around 200

10.1103/physrevlett.113.121101 article EN publisher-specific-oa Physical Review Letters 2014-09-18

Precision measurements by the Alpha Magnetic Spectrometer on International Space Station of primary cosmic-ray electron flux in range 0.5 to 700 GeV and positron 500 are presented. The each require a description beyond single power-law spectrum. Both change their behavior at ∼30 but fluxes significantly different magnitude energy dependence. Between 20 200 spectral index is harder than index. determination differing indices versus new observation provides important information origins...

10.1103/physrevlett.113.121102 article EN Physical Review Letters 2014-09-18

Knowledge of the precise rigidity dependence helium flux is important in understanding origin, acceleration, and propagation cosmic rays. A measurement primary rays with (momentum/charge) from 1.9 GV to 3 TV based on 50 million events presented compared proton flux. The detailed variation spectral index for first time. progressively hardens at rigidities larger than 100 GV. similar that though magnitudes are different. Remarkably, ratio increases up 45 then becomes constant; above well...

10.1103/physrevlett.115.211101 article EN cc-by Physical Review Letters 2015-11-17

A precision measurement by AMS of the antiproton flux and antiproton-to-proton ratio in primary cosmic rays absolute rigidity range from 1 to 450 GV is presented based on 3.49×10^{5} events 2.42×10^{9} proton events. The fluxes ratios charged elementary particles are also presented. In ∼60 ∼500 GV, p[over ¯], p, positron e^{+} found have nearly identical dependence electron e^{-} exhibits a different dependence. Below 60 (p[over ¯]/p), ¯]/e^{+}), (p/e^{+}) each reaches maximum. From show no...

10.1103/physrevlett.117.091103 article EN cc-by Physical Review Letters 2016-08-26

The Alpha Magnetic Spectrometer (AMS) is a precision particle physics detector on the International Space Station (ISS) conducting unique, long-duration mission of fundamental research in space. objectives include precise studies origin dark matter, antimatter, and cosmic rays as well exploration new phenomena. Following 16-year period construction testing, precursor flight Shuttle, AMS was installed ISS May 19, 2011. In this report we present results based 120 billion charged ray events up...

10.1016/j.physrep.2020.09.003 article EN cc-by-nc-nd Physics Reports 2020-09-19

Knowledge of the rigidity dependence boron to carbon flux ratio (B/C) is important in understanding propagation cosmic rays. The precise measurement B/C from 1.9 GV 2.6 TV, based on 2.3 million and 8.3 nuclei collected by AMS during first 5 years operation, presented. detailed variation with spectral index reported for time. does not show any significant structures contrast many ray models that require such at high rigidities. Remarkably, above 65 GV, well described a single power law R^{Δ}...

10.1103/physrevlett.117.231102 article EN cc-by Physical Review Letters 2016-11-28

A measurement of the cosmic ray positron fraction e+/(e++e−) in energy range 1–30 GeV is presented. The based on data taken by AMS-01 experiment during its 10 day Space Shuttle flight June 1998. proton background suppression order 106 reached identifying converted bremsstrahlung photons emitted from positrons.

10.1016/j.physletb.2007.01.024 article EN cc-by Physics Letters B 2007-02-02

We report the observation of new properties primary cosmic rays He, C, and O measured in rigidity (momentum/charge) range 2 GV to 3 TV with 90×10^{6} helium, 8.4×10^{6} carbon, 7.0×10^{6} oxygen nuclei collected by Alpha Magnetic Spectrometer (AMS) during first five years operation. Above 60 GV, these three spectra have identical dependence. They all deviate from a single power law above 200 harden an way.

10.1103/physrevlett.119.251101 article EN cc-by Physical Review Letters 2017-12-18

We present a measurement of the cosmic ray (e^{+}+e^{-}) flux in range 0.5 GeV to 1 TeV based on analysis 10.6 million events collected by AMS. The statistics and resolution AMS provide precision flux. is smooth reveals new distinct information. Above 30.2 GeV, can be described single power law with spectral index γ=-3.170±0.008(stat+syst)±0.008(energy scale).

10.1103/physrevlett.113.221102 article EN publisher-specific-oa Physical Review Letters 2014-11-26

Precision measurements of cosmic ray positrons are presented up to 1 TeV based on 1.9 million collected by the Alpha Magnetic Spectrometer International Space Station. The positron flux exhibits complex energy dependence. Its distinctive properties (a) a significant excess starting from 25.2±1.8 GeV compared lower-energy, power-law trend, (b) sharp dropoff above 284+91−64 GeV, (c) in entire range is well described sum term associated with produced collision rays, which dominates at low...

10.1103/physrevlett.122.041102 article EN cc-by Physical Review Letters 2019-01-29

We report on the observation of new properties secondary cosmic rays Li, Be, and B measured in rigidity (momentum per unit charge) range 1.9 GV to 3.3 TV with a total 5.4×10^{6} nuclei collected by AMS during first five years operation aboard International Space Station. The Li fluxes have an identical dependence above 7 all three 30 Li/Be flux ratio 2.0±0.1. deviate from single power law 200 way. This behavior has also been observed measurement primary He, C, O but dependences are...

10.1103/physrevlett.120.021101 article EN cc-by Physical Review Letters 2018-01-11

Abstract LiteBIRD, the Lite (Light) satellite for study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission primordial cosmology fundamental physics. The Japan Aerospace Exploration Agency (JAXA) selected LiteBIRD in May 2019 as strategic large-class (L-class) mission, with an expected launch late 2020s using JAXA’s H3 rocket. planned to orbit Sun–Earth Lagrangian point L2, where it will map microwave over entire sky three years, telescopes 15...

10.1093/ptep/ptac150 article EN cc-by Progress of Theoretical and Experimental Physics 2022-11-21

Precision results on cosmic-ray electrons are presented in the energy range from 0.5 GeV to 1.4 TeV based $28.1\ifmmode\times\else\texttimes\fi{}{10}^{6}$ collected by Alpha Magnetic Spectrometer International Space Station. In entire electron and positron spectra have distinctly different magnitudes dependences. The flux exhibits a significant excess starting $42.{1}_{\ensuremath{-}5.2}^{+5.4}\text{ }\text{ }\mathrm{GeV}$ compared lower trends, but nature of this is above...

10.1103/physrevlett.122.101101 article EN cc-by Physical Review Letters 2019-03-13

Local interstellar spectra (LIS) for protons, helium, and antiprotons are built using the most recent experimental results combined with state-of-the-art models propagation in Galaxy heliosphere. Two packages, GALPROP HelMod, to provide a single framework that is run reproduce direct measurements of cosmic-ray (CR) species at different modulation levels both polarities solar magnetic field. To do so self-consistent way, an iterative procedure was developed, where LIS output fed into...

10.3847/1538-4357/aa6e4f article EN The Astrophysical Journal 2017-05-10

We present the precision measurement from May 2011 to 2017 (79 Bartels rotations) of proton fluxes at rigidities 1 60 GV and helium 1.9 based on a total 1×10^{9} events collected with Alpha Magnetic Spectrometer aboard International Space Station. This is in solar cycle 24, which has maximum April 2014. observed that, below 40 GV, flux show nearly identical fine structures both time relative amplitude. The amplitudes decrease increasing rigidity vanish above GV. are reduced during period,...

10.1103/physrevlett.121.051101 article EN cc-by Physical Review Letters 2018-07-31

Composition and spectra of Galactic cosmic rays (CRs) are vital for studies high-energy processes in a variety environments on different scales, interpretation γ-ray microwave observations, disentangling possible signatures new phenomena, understanding our local neighborhood. Since its launch, AMS-02 has delivered outstanding-quality measurements the p¯ , e±, nuclei: 1H-8O, 10Ne, 12Mg, 14Si. These resulted number breakthroughs; however, heavier nuclei especially low-abundance not expected...

10.3847/1538-4365/aba901 article EN The Astrophysical Journal Supplement Series 2020-09-29

We report the observation of new properties primary iron (Fe) cosmic rays in rigidity range 2.65 GV to 3.0 TV with 0.62×106 nuclei collected by Alpha Magnetic Spectrometer experiment on International Space Station. Above 80.5 dependence ray Fe flux is identical He, C, and O fluxes, Fe/O ratio being constant at 0.155±0.006. This shows that unexpectedly belong same class which different from Ne, Mg, Si class.Received 2 October 2020Revised 22 November 2020Accepted 9 December...

10.1103/physrevlett.126.041104 article EN cc-by Physical Review Letters 2021-01-28

We present high-statistics, precision measurements of the detailed time and energy dependence primary cosmic-ray electron flux positron over 79 Bartels rotations from May 2011 to 2017 in range 1 50 GeV. For first time, charge-sign dependent modulation during solar maximum has been investigated detail by leptons alone. Based on 23.5×10^{6} events, we report observation short-term structures timescale months coincident both flux. These are not visible e^{+}/e^{-} ratio. The across polarity...

10.1103/physrevlett.121.051102 article EN cc-by Physical Review Letters 2018-07-31

A precision measurement of the nitrogen flux with rigidity (momentum per unit charge) from 2.2 GV to 3.3 TV based on 2.2×10^{6} events is presented. The detailed dependence spectral index presented for first time. rapidly hardens at high rigidities and becomes identical indices primary He, C, O cosmic rays above ∼700 GV. We observed that Φ_{N} can be as sum its component Φ_{N}^{P} secondary Φ_{N}^{S}, Φ_{N}=Φ_{N}^{P}+Φ_{N}^{S}, we found well described by weighted oxygen Φ_{O} (primary rays)...

10.1103/physrevlett.121.051103 article EN cc-by Physical Review Letters 2018-07-31

We report the observation of new properties primary cosmic rays, neon (Ne), magnesium (Mg), and silicon (Si), measured in rigidity range 2.15 GV to 3.0 TV with 1.8×10^{6} Ne, 2.2×10^{6} Mg, 1.6×10^{6} Si nuclei collected by Alpha Magnetic Spectrometer experiment on International Space Station. The Ne Mg spectra have identical dependence above 3.65 GV. three 86.5 GV, deviate from a single power law 200 harden an way. Unexpectedly, rays is different He, C, O. This shows that O are two classes rays.

10.1103/physrevlett.124.211102 article EN cc-by Physical Review Letters 2020-05-29
Coming Soon ...