J. Berdugo

ORCID: 0000-0002-7911-8532
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Particle physics theoretical and experimental studies
  • Quantum Chromodynamics and Particle Interactions
  • High-Energy Particle Collisions Research
  • Dark Matter and Cosmic Phenomena
  • Neutrino Physics Research
  • Particle Detector Development and Performance
  • Astrophysics and Cosmic Phenomena
  • Cosmology and Gravitation Theories
  • Solar and Space Plasma Dynamics
  • Atomic and Subatomic Physics Research
  • Computational Physics and Python Applications
  • Black Holes and Theoretical Physics
  • Radiation Detection and Scintillator Technologies
  • Particle Accelerators and Free-Electron Lasers
  • Geomagnetism and Paleomagnetism Studies
  • Nuclear Physics and Applications
  • Astro and Planetary Science
  • Ionosphere and magnetosphere dynamics
  • Radiation Therapy and Dosimetry
  • Atmospheric Ozone and Climate
  • Superconducting Materials and Applications
  • Medical Imaging Techniques and Applications
  • Nuclear physics research studies
  • Particle accelerators and beam dynamics
  • Gamma-ray bursts and supernovae

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas
2014-2023

Université de Montréal
2019

Centre Hospitalier de l’Université de Montréal
2019

Universidad Complutense de Madrid
1998-2016

Argonne National Laboratory
2013

Unidades Centrales Científico-Técnicas
2004-2012

European Organization for Nuclear Research
1994-2007

Tata Institute of Fundamental Research
1998-2006

Laboratoire d’Annecy de Physique des Particules
2005

University of Cambridge
2003

A precision measurement by the Alpha Magnetic Spectrometer on International Space Station of positron fraction in primary cosmic rays energy range from 0.5 to 350 GeV based $6.8\ifmmode\times\else\texttimes\fi{}{10}^{6}$ and electron events is presented. The very accurate data show that steadily increasing 10 $\ensuremath{\sim}250\text{ }\text{ }\mathrm{GeV}$, but, 20 250 GeV, slope decreases an order magnitude. spectrum shows no fine structure, ratio observable anisotropy. Together, these...

10.1103/physrevlett.110.141102 article EN publisher-specific-oa Physical Review Letters 2013-04-03

A precise measurement of the proton flux in primary cosmic rays with rigidity (momentum/charge) from 1 GV to 1.8 TV is presented based on 300 million events. Knowledge dependence important understanding origin, acceleration, and propagation rays. We present detailed variation spectral index for first time. The progressively hardens at high rigidities.Received 6 March 2015DOI:https://doi.org/10.1103/PhysRevLett.114.171103This article available under terms Creative Commons Attribution 3.0...

10.1103/physrevlett.114.171103 article EN cc-by Physical Review Letters 2015-04-30

Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build next generation instrument, factor 5-10 improvement sensitivity 100 GeV 10 TeV range extension energies well below above TeV. will consist two arrays (one north, one south) for full sky coverage be operated as open observatory....

10.1007/s10686-011-9247-0 article EN cc-by-nc Experimental Astronomy 2011-11-22

Measurements of the positron fraction in high energy cosmic rays using space-borne Alpha Magnetic Spectrometer have been extended to energies 500 GeV. The new results show that stops increasing with at around 200

10.1103/physrevlett.113.121101 article EN publisher-specific-oa Physical Review Letters 2014-09-18

Precision measurements by the Alpha Magnetic Spectrometer on International Space Station of primary cosmic-ray electron flux in range 0.5 to 700 GeV and positron 500 are presented. The each require a description beyond single power-law spectrum. Both change their behavior at ∼30 but fluxes significantly different magnitude energy dependence. Between 20 200 spectral index is harder than index. determination differing indices versus new observation provides important information origins...

10.1103/physrevlett.113.121102 article EN Physical Review Letters 2014-09-18

Knowledge of the precise rigidity dependence helium flux is important in understanding origin, acceleration, and propagation cosmic rays. A measurement primary rays with (momentum/charge) from 1.9 GV to 3 TV based on 50 million events presented compared proton flux. The detailed variation spectral index for first time. progressively hardens at rigidities larger than 100 GV. similar that though magnitudes are different. Remarkably, ratio increases up 45 then becomes constant; above well...

10.1103/physrevlett.115.211101 article EN cc-by Physical Review Letters 2015-11-17

A precision measurement by AMS of the antiproton flux and antiproton-to-proton ratio in primary cosmic rays absolute rigidity range from 1 to 450 GV is presented based on 3.49×10^{5} events 2.42×10^{9} proton events. The fluxes ratios charged elementary particles are also presented. In ∼60 ∼500 GV, p[over ¯], p, positron e^{+} found have nearly identical dependence electron e^{-} exhibits a different dependence. Below 60 (p[over ¯]/p), ¯]/e^{+}), (p/e^{+}) each reaches maximum. From show no...

10.1103/physrevlett.117.091103 article EN cc-by Physical Review Letters 2016-08-26

The Alpha Magnetic Spectrometer (AMS) is a precision particle physics detector on the International Space Station (ISS) conducting unique, long-duration mission of fundamental research in space. objectives include precise studies origin dark matter, antimatter, and cosmic rays as well exploration new phenomena. Following 16-year period construction testing, precursor flight Shuttle, AMS was installed ISS May 19, 2011. In this report we present results based 120 billion charged ray events up...

10.1016/j.physrep.2020.09.003 article EN cc-by-nc-nd Physics Reports 2020-09-19

Knowledge of the rigidity dependence boron to carbon flux ratio (B/C) is important in understanding propagation cosmic rays. The precise measurement B/C from 1.9 GV 2.6 TV, based on 2.3 million and 8.3 nuclei collected by AMS during first 5 years operation, presented. detailed variation with spectral index reported for time. does not show any significant structures contrast many ray models that require such at high rigidities. Remarkably, above 65 GV, well described a single power law R^{Δ}...

10.1103/physrevlett.117.231102 article EN cc-by Physical Review Letters 2016-11-28

A measurement of the cosmic ray positron fraction e+/(e++e−) in energy range 1–30 GeV is presented. The based on data taken by AMS-01 experiment during its 10 day Space Shuttle flight June 1998. proton background suppression order 106 reached identifying converted bremsstrahlung photons emitted from positrons.

10.1016/j.physletb.2007.01.024 article EN cc-by Physics Letters B 2007-02-02

We report the observation of new properties primary cosmic rays He, C, and O measured in rigidity (momentum/charge) range 2 GV to 3 TV with 90×10^{6} helium, 8.4×10^{6} carbon, 7.0×10^{6} oxygen nuclei collected by Alpha Magnetic Spectrometer (AMS) during first five years operation. Above 60 GV, these three spectra have identical dependence. They all deviate from a single power law above 200 harden an way.

10.1103/physrevlett.119.251101 article EN cc-by Physical Review Letters 2017-12-18

We present a measurement of the cosmic ray (e^{+}+e^{-}) flux in range 0.5 GeV to 1 TeV based on analysis 10.6 million events collected by AMS. The statistics and resolution AMS provide precision flux. is smooth reveals new distinct information. Above 30.2 GeV, can be described single power law with spectral index γ=-3.170±0.008(stat+syst)±0.008(energy scale).

10.1103/physrevlett.113.221102 article EN publisher-specific-oa Physical Review Letters 2014-11-26

Precision measurements of cosmic ray positrons are presented up to 1 TeV based on 1.9 million collected by the Alpha Magnetic Spectrometer International Space Station. The positron flux exhibits complex energy dependence. Its distinctive properties (a) a significant excess starting from 25.2±1.8 GeV compared lower-energy, power-law trend, (b) sharp dropoff above 284+91−64 GeV, (c) in entire range is well described sum term associated with produced collision rays, which dominates at low...

10.1103/physrevlett.122.041102 article EN cc-by Physical Review Letters 2019-01-29

We report on the observation of new properties secondary cosmic rays Li, Be, and B measured in rigidity (momentum per unit charge) range 1.9 GV to 3.3 TV with a total 5.4×10^{6} nuclei collected by AMS during first five years operation aboard International Space Station. The Li fluxes have an identical dependence above 7 all three 30 Li/Be flux ratio 2.0±0.1. deviate from single power law 200 way. This behavior has also been observed measurement primary He, C, O but dependences are...

10.1103/physrevlett.120.021101 article EN cc-by Physical Review Letters 2018-01-11

Precision results on cosmic-ray electrons are presented in the energy range from 0.5 GeV to 1.4 TeV based $28.1\ifmmode\times\else\texttimes\fi{}{10}^{6}$ collected by Alpha Magnetic Spectrometer International Space Station. In entire electron and positron spectra have distinctly different magnitudes dependences. The flux exhibits a significant excess starting $42.{1}_{\ensuremath{-}5.2}^{+5.4}\text{ }\text{ }\mathrm{GeV}$ compared lower trends, but nature of this is above...

10.1103/physrevlett.122.101101 article EN cc-by Physical Review Letters 2019-03-13

We present the precision measurement from May 2011 to 2017 (79 Bartels rotations) of proton fluxes at rigidities 1 60 GV and helium 1.9 based on a total 1×10^{9} events collected with Alpha Magnetic Spectrometer aboard International Space Station. This is in solar cycle 24, which has maximum April 2014. observed that, below 40 GV, flux show nearly identical fine structures both time relative amplitude. The amplitudes decrease increasing rigidity vanish above GV. are reduced during period,...

10.1103/physrevlett.121.051101 article EN cc-by Physical Review Letters 2018-07-31

We report the observation of new properties primary iron (Fe) cosmic rays in rigidity range 2.65 GV to 3.0 TV with 0.62×106 nuclei collected by Alpha Magnetic Spectrometer experiment on International Space Station. Above 80.5 dependence ray Fe flux is identical He, C, and O fluxes, Fe/O ratio being constant at 0.155±0.006. This shows that unexpectedly belong same class which different from Ne, Mg, Si class.Received 2 October 2020Revised 22 November 2020Accepted 9 December...

10.1103/physrevlett.126.041104 article EN cc-by Physical Review Letters 2021-01-28

We present high-statistics, precision measurements of the detailed time and energy dependence primary cosmic-ray electron flux positron over 79 Bartels rotations from May 2011 to 2017 in range 1 50 GeV. For first time, charge-sign dependent modulation during solar maximum has been investigated detail by leptons alone. Based on 23.5×10^{6} events, we report observation short-term structures timescale months coincident both flux. These are not visible e^{+}/e^{-} ratio. The across polarity...

10.1103/physrevlett.121.051102 article EN cc-by Physical Review Letters 2018-07-31
Coming Soon ...