Praveen Surendran

ORCID: 0000-0002-4911-6077
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Genetic Associations and Epidemiology
  • Bioinformatics and Genomic Networks
  • Nutrition, Genetics, and Disease
  • Metabolomics and Mass Spectrometry Studies
  • Genomics and Rare Diseases
  • Birth, Development, and Health
  • Lipid metabolism and disorders
  • Blood groups and transfusion
  • Cancer-related molecular mechanisms research
  • Lipoproteins and Cardiovascular Health
  • Metabolism, Diabetes, and Cancer
  • Diet and metabolism studies
  • Adipose Tissue and Metabolism
  • Epigenetics and DNA Methylation
  • Atherosclerosis and Cardiovascular Diseases
  • Hemoglobinopathies and Related Disorders
  • Hormonal Regulation and Hypertension
  • Liver Disease Diagnosis and Treatment
  • Folate and B Vitamins Research
  • IoT-based Smart Home Systems
  • Inflammatory mediators and NSAID effects
  • Gene expression and cancer classification
  • Genetic Mapping and Diversity in Plants and Animals
  • Diabetes, Cardiovascular Risks, and Lipoproteins
  • Cholesterol and Lipid Metabolism

Brigham and Women's Hospital
2025

Circadian (United States)
2025

Age UK
2022-2025

University of Cambridge
2015-2024

British Heart Foundation
2020-2024

Health Data Research UK
2020-2024

Addenbrooke's Hospital
2023-2024

Genomics (United Kingdom)
2024

GlaxoSmithKline (United Kingdom)
2022-2023

SRM Institute of Science and Technology
2022

Abstract Summary PhenoScanner is a curated database of publicly available results from large-scale genetic association studies in humans. This online tool facilitates ‘phenome scans’, where variants are cross-referenced for with many phenotypes different types. Here we present major update (‘PhenoScanner V2’), including over 150 million and more than 65 billion associations (compared to 350 V1) diseases traits, gene expression, metabolite protein levels, epigenetic markers. The query options...

10.1093/bioinformatics/btz469 article EN cc-by Bioinformatics 2019-06-19

Abstract Summary: PhenoScanner is a curated database of publicly available results from large-scale genetic association studies. This tool aims to facilitate ‘phenome scans’, the cross-referencing variants with many phenotypes, help aid understanding disease pathways and biology. The currently contains over 350 million 10 unique variants, mostly single nucleotide polymorphisms. It accompanied by web-based that queries for associations user-specified providing according same effect non-effect...

10.1093/bioinformatics/btw373 article EN cc-by Bioinformatics 2016-06-17

The Pharma Proteomics Project is a precompetitive biopharmaceutical consortium characterizing the plasma proteomic profiles of 54,219 UK Biobank participants. Here we provide detailed summary this initiative, including technical and biological validations, insights into disease signatures, prediction modelling for various demographic health indicators. We present comprehensive protein quantitative trait locus (pQTL) mapping 2,923 proteins that identifies 14,287 primary genetic associations,...

10.1038/s41586-023-06592-6 article EN cc-by Nature 2023-10-04

<h3>Importance</h3> Human genetic studies have indicated that plasma lipoprotein(a) (Lp[a]) is causally associated with the risk of coronary heart disease (CHD), but randomized trials several therapies reduce Lp(a) levels by 25% to 35% not provided any evidence lowering level reduces CHD risk. <h3>Objective</h3> To estimate magnitude change in needed same an association as a 38.67-mg/dL (ie, 1-mmol/L) low-density lipoprotein cholesterol (LDL-C) level, has been shown produce clinically...

10.1001/jamacardio.2018.1470 article EN cc-by JAMA Cardiology 2018-06-20
Paolo Zanoni Sumeet A. Khetarpal Daniel B. Larach William Hancock‐Cerutti John S. Millar and 95 more Marina Cuchel Stephanie DerOhannessian Anatol Kontush Praveen Surendran Danish Saleheen Stella Trompet J. Wouter Jukema Anton de Craen Panos Deloukas Naveed Sattar Ian Ford Chris J. Packard Abdullah Al Shafi Majumder Dewan S Alam Emanuele Di Angelantonio Gonçalo R. Abecasis Rajiv Chowdhury Jeanette Erdmann Børge G. Nordestgaard Sune F. Nielsen Anne Tybjærg‐Hansen Ruth Frikke‐Schmidt Kari Kuulasmaa Dajiang J. Liu Markus Perola Stefan Blankenberg Veikko Salomaa Satu Männistö Philippe Amouyel Dominique Arveiler Jean Ferrières Martina Müller‐Nurasyid Maurizio Ferrario Frank Kee Cristen J. Willer Nilesh J. Samani Heribert Schunkert Adam S. Butterworth Joanna M. M. Howson Gina M. Peloso Nathan O. Stitziel John Danesh Sekar Kathiresan Daniel J. Rader Sarah Watson Ellen M. Schmidt Sebanti Sengupta Stefan Gustafsson Stavroula Kanoni Andrea Ganna Ming‐Huei Chen Martin L. Buchkovich Samia Mora J. Beckmann Jennifer L. Bragg‐Gresham Hsing‐Yi Chang Ayşe Demirkan Heleen M. den Hertog Ron Do Louise A. Donnelly Georg Ehret Tõnu Esko Mary F. Feitosa Teresa Ferreira Krista Fischer Pierre Fontanillas Ross M. Fraser Daniel F. Freitag Deepti Gurdasani Kauko Heikkilä Elina Hyppönen Aaron Isaacs Anne Jackson Åsa Johansson Toby Johnson Marika Kaakinen Johannes Kettunen Marcus E. Kleber Xiaohui Li Jian’an Luan Leo‐Pekka Lyytikäinen Patrik K. E. Magnusson Massimo Mangino Evelin Mihailov May E. Montasser Ilja M. Nolte Jeffrey R. O’Connell Nicholette D. Palmer Ann-Kristin Petersen Serena Sanna Richa Saxena Susan K. Service Sonia Shah Dmitry Shungin Carlo Sidore

A scavenger that protects the heart Coronary disease is a tale of two forms plasma cholesterol. In contrast to well-established effects “bad” cholesterol (LDL-C), role “good” (HDL-C) mysterious. Elevated HDL-C correlates with lower risk disease, yet drugs raise levels do not reduce risk. Zanoni et al. found some people exceptionally high carry rare sequence variant in gene encoding major receptor, receptor BI. This destroys receptor's ability take up HDL-C. Interestingly, this have higher...

10.1126/science.aad3517 article EN Science 2016-03-10
Ayush Giri Jacklyn N. Hellwege Jacob M. Keaton Jihwan Park Chengxiang Qiu and 93 more Helen Warren Eric S. Torstenson Csaba P. Kövesdy Yan V. Sun Otis D. Wilson Cassianne Robinson‐Cohen Christianne L. Roumie Cecilia P. Chung Kelly A. Birdwell Scott M. Damrauer Scott L. DuVall Derek Klarin Kelly Cho Yu Wang Εvangelos Εvangelou Claudia P. Cabrera Louise V. Wain Rojesh Shrestha Brian S. Mautz Elvis A. Akwo Muralidharan Sargurupremraj Stéphanie Debette Michael Boehnke Laura J. Scott Jian’an Luan Jing-Hua Zhao Sara M. Willems Sébastien Thériault Nabi Shah Christopher Oldmeadow Peter Almgren Ruifang Li‐Gao Niek Verweij Thibaud Boutin Massimo Mangino Ioanna Ntalla Elena V. Feofanova Praveen Surendran James P. Cook Savita Karthikeyan Najim Lahrouchi Chunyu Liu Nuno Sepúlveda Tom G. Richardson Aldi T. Kraja Philippe Amouyel Martin Farrall Neil R Poulter Markku Laakso Eleftheria Zeggini Peter Sever Robert A. Scott Claudia Langenberg Nicholas J. Wareham David Conen Nicholette D. Palmer John Attia Daniel I. Chasman Paul M. Ridker Olle Melander Dennis Owen Mook-Kanamori Pim van der Harst Francesco Cucca David Schlessinger Caroline Hayward Tim D. Spector Marjo-Riitta Jarvelin Branwen J. Hennig Nicholas J. Timpson Wei-Qi Wei Joshua C. Smith Yaomin Xu Michael E. Matheny Edward D. Siew Cecilia M. Lindgren Karl‐Heinz Herzig George Dedoussis Joshua C. Denny Bruce M. Psaty Joanna M. M. Howson Patricia B. Munroe Christopher Newton‐Cheh Mark J. Caulfield Paul Elliott J. Michael Gaziano John Concato Peter W.F. Wilson Philip S. Tsao Digna R. Velez Edwards Katalin Suszták Christopher J. O’Donnell Adriana M. Hung Todd L. Edwards

10.1038/s41588-018-0303-9 article EN Nature Genetics 2018-12-19

Circulating proteins have important functions in inflammation and a broad range of diseases. To identify genetic influences on inflammation-related proteins, we conducted genome-wide protein quantitative trait locus (pQTL) study 91 plasma measured using the Olink Target platform 14,824 participants. We identified 180 pQTLs (59 cis, 121 trans). Integration pQTL data with eQTL disease association studies provided insight into pathogenesis, implicating lymphotoxin-α multiple sclerosis. Using...

10.1038/s41590-023-01588-w article EN cc-by Nature Immunology 2023-08-10

10.1038/ng.3943 article EN Nature Genetics 2017-09-04
Tom R. Webb Jeanette Erdmann Kathleen Stirrups Nathan O. Stitziel Nicholas G. D. Masca and 95 more Henning Jansen Stavroula Kanoni Christopher P. Nelson Paola G. Ferrario Inke R. König John D. Eicher Andrew D. Johnson Stephen E. Hamby Christer Betsholtz Arno Ruusalepp Oscar Franzén Eric E. Schadt Johan Björkegren Peter Weeke Paul L. Auer Ursula M. Schick Yingchang Lu He Zhang Marie‐Pierre Dubé Anuj Goel Martin Farrall Gina M. Peloso Hong‐Hee Won Ron Do Erik Van Iperen Jochen Kruppa Anubha Mahajan Robert A. Scott Christina Willenborg Peter S. Braund Julian C. van Capelleveen Alex S. F. Doney Louise A. Donnelly Rosanna Asselta Pier Angelica Merlini Stefano Duga Nicola Marziliano Joshua C. Denny Christian M. Shaffer Nour Eddine El-Mokhtari André Franke Stefanie Heilmann‐Heimbach Christian Hengstenberg Per Hoffmann Oddgeir L. Holmen Kristian Hveem Jan-Håkan Jansson Karl‐Heinz Jöckel Thorsten Kessler Jennifer Kriebel Karl‐Ludwig Laugwitz Eirini Marouli Nicola Martinelli Mark I. McCarthy Natalie R. van Zuydam Christa Meisinger Tõnu Esko Evelin Mihailov Stefan Andersson Escher Maris Alver Susanne Moebus Andrew D. Morris Jarma Virtamo Majid Nikpay Oliviero Olivieri Sylvie Provost Alaa AlQarawi Neil R. Robertson Karen O. Akinsansya Dermot F. Reilly Thomas Vogt Wu Yin Folkert W. Asselbergs Charles Kooperberg Rebecca D. Jackson Eli A. Stahl Martina Müller‐Nurasyid Konstantin Strauch Tibor V. Varga Mélanie Waldenberger Lingyao Zeng Rajiv Chowdhury Veikko Salomaa Ian Ford J. Wouter Jukema Philippe Amouyel Jukka Kontto Børge G. Nordestgaard Jean Ferrières Danish Saleheen Naveed Sattar Praveen Surendran Aline Wagner Robin Young Joanna M. M. Howson

Genome-wide association studies have so far identified 56 loci associated with risk of coronary artery disease (CAD). Many CAD show pleiotropy; that is, they are also other diseases or traits. This study sought to systematically test if genetic variants for non-CAD diseases/traits associate and undertake a comprehensive analysis the extent pleiotropy all loci. In discovery analyses involving 42,335 cases 78,240 control subjects we tested 29,383 common (minor allele frequency >5%) single...

10.1016/j.jacc.2016.11.056 article EN cc-by Journal of the American College of Cardiology 2017-02-01

Abstract The UK Biobank Pharma Proteomics Project (UKB-PPP) is a collaboration between the (UKB) and thirteen biopharmaceutical companies characterising plasma proteomic profiles of 54,306 UKB participants. Here, we describe results from first phase UKB-PPP, including protein quantitative trait loci (pQTL) mapping 1,463 proteins that identifies 10,248 primary genetic associations, which 85% are newly discovered. We also identify independent secondary associations in 92% cis 29% trans loci,...

10.1101/2022.06.17.496443 preprint EN cc-by-nc-nd bioRxiv (Cold Spring Harbor Laboratory) 2022-06-18

Abstract Genome-wide association analyses using high-throughput metabolomics platforms have led to novel insights into the biology of human metabolism 1–7 . This detailed knowledge genetic determinants systemic has been pivotal for uncovering how pathways influence biological mechanisms and complex diseases 8–11 Here we present a genome-wide study 233 circulating metabolic traits quantified by nuclear magnetic resonance spectroscopy in up 136,016 participants from 33 cohorts. We identify...

10.1038/s41586-024-07148-y article EN cc-by Nature 2024-03-06

Abstract Garrod’s concept of ‘chemical individuality’ has contributed to comprehension the molecular origins human diseases. Untargeted high-throughput metabolomic technologies provide an in-depth snapshot metabolism at scale. We studied genetic architecture plasma metabolome using 913 metabolites assayed in 19,994 individuals and identified 2,599 variant–metabolite associations ( P &lt; 1.25 × 10 −11 ) within 330 genomic regions, with rare variants (minor allele frequency ≤ 1%) explaining...

10.1038/s41591-022-02046-0 article EN cc-by Nature Medicine 2022-11-01

Metabolic biomarker data quantified by nuclear magnetic resonance (NMR) spectroscopy in approximately 121,000 UK Biobank participants has recently been released as a community resource, comprising absolute concentrations and ratios of 249 circulating metabolites, lipids, lipoprotein sub-fractions. Here we identify characterise additional sources unwanted technical variation influencing individual biomarkers the available to download from Biobank. These included sample preparation time,...

10.1038/s41597-023-01949-y article EN cc-by Scientific Data 2023-01-31
Coming Soon ...