Seth Carbon

ORCID: 0000-0001-8244-1536
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Biomedical Text Mining and Ontologies
  • Bioinformatics and Genomic Networks
  • Genetics, Bioinformatics, and Biomedical Research
  • Gene expression and cancer classification
  • Genomics and Rare Diseases
  • Genomics and Phylogenetic Studies
  • Semantic Web and Ontologies
  • Research Data Management Practices
  • Advanced Graph Neural Networks
  • Scientific Computing and Data Management
  • Computational Physics and Python Applications
  • Banana Cultivation and Research
  • Superconducting Materials and Applications
  • Big Data Technologies and Applications
  • Computational Drug Discovery Methods
  • Cell Image Analysis Techniques
  • Tuberculosis Research and Epidemiology
  • Management, Economics, and Public Policy
  • AI in cancer detection
  • Cell Adhesion Molecules Research
  • Botanical Studies and Applications
  • Seismology and Earthquake Studies
  • Genetics, Aging, and Longevity in Model Organisms
  • Misinformation and Its Impacts
  • Digital Imaging for Blood Diseases

Lawrence Berkeley National Laboratory
2016-2025

University College London
2023

University of Padua
2023

SIB Swiss Institute of Bioinformatics
2023

Stanford University
2023

Phoenix Bioinformatics
2023

University at Buffalo, State University of New York
2023

University of Southern California
2023

Ontario Institute for Cancer Research
2011

Joint Genome Institute
2008

The Gene Ontology resource (GO; http: //geneontology.org)provides structured, computable knowledge regarding the functions of genes and gene products.Founded in 1998, GO has become widely adopted life sciences, its contents are under continual improvement, both quantity quality.Here, we report major developments during past two years.Each monthly release is now packaged given a unique identifier (DOI), enabling GO-based analyses on specific to be reproduced future.The molecular function...

10.1093/nar/gky1055 article EN cc-by Nucleic Acids Research 2018-10-17
Seth Carbon Eric Douglass Benjamin M. Good Deepak Unni Nomi L. Harris and 95 more Chris Mungall Siddartha Basu Rex L. Chisholm Robert J. Dodson Eric C Hartline Petra Fey Paul D. Thomas Laurent‐Philippe Albou Dustin Ebert Michael J Kesling Huaiyu Mi Anushya Muruganujan Xiaosong Huang Tremayne Mushayahama Sandra LaBonte Deborah A. Siegele Giulia Antonazzo Helen Attrill Nicholas H. Brown Phani Garapati Steven J Marygold Vítor Trovisco Gil dos Santos Kathleen Falls Christopher J. Tabone Pinglei Zhou Joshua L. Goodman Victor Strelets Jim Thurmond Penelope Garmiri Rizwan Ishtiaq M. Rodríguez-López Márcio Luís Acencio Martin Kuiper Astrid Lægreid Colin Logie Ruth C. Lovering Barbara Kramarz Shirin C C Saverimuttu Sandra De Miranda Pinheiro Heather Gunn Renzhi Su Kate E. Thurlow Marcus C. Chibucos Michelle Giglio Suvarna Nadendla James B. Munro Rebecca Jackson Margaret Duesbury Noemí del‐Toro Birgit H M Meldal Kalpana Paneerselvam Livia Perfetto Pablo Porras Sandra Orchard Anjali Shrivastava Hsin-Yu Chang ROBERT FINN Alex Mitchell Neil D. Rawlings Lorna Richardson Amaia Sangrador‐Vegas Judith A. Blake Karen Christie M. Eileen Dolan Harold Drabkin David P. Hill Li Ni Dmitry Sitnikov Midori A. Harris Stephen G. Oliver Kim Rutherford Valerie Wood Jaqueline Hayles Jürg Bähler Elizabeth R. Bolton Jeffery L De Pons Melinda R. Dwinell G. Thomas Hayman Mary L. Kaldunski Anne E. Kwitek Stanley J. F. Laulederkind Cody Plasterer Marek Tutaj Mahima Vedi Shur‐Jen Wang Peter D’Eustachio Lisa Matthews James P. Balhoff Suzi Aleksander Michael J. Alexander J. Michael Cherry Stacia R. Engel Felix Gondwe Kalpana Karra

Abstract The Gene Ontology Consortium (GOC) provides the most comprehensive resource currently available for computable knowledge regarding functions of genes and gene products. Here, we report advances consortium over past two years. new GO-CAM annotation framework was notably improved, formalized model with a computational schema to check validate rapidly increasing repository 2838 GO-CAMs. In addition, describe impacts several collaborations refine GO 10% increase in number annotations,...

10.1093/nar/gkaa1113 article EN cc-by Nucleic Acids Research 2020-12-03

AmiGO is a web application that allows users to query, browse and visualize ontologies related gene product annotation (association) data. can be used online at the Gene Ontology (GO) website access data provided by GO Consortium; it also downloaded installed local annotations. free open source software developed maintained Consortium.

10.1093/bioinformatics/btn615 article EN cc-by-nc Bioinformatics 2008-11-25

The Gene Ontology (GO) Consortium (GOC, http://www.geneontology.org) is a community-based bioinformatics resource that classifies gene product function through the use of structured, controlled vocabularies. Over past year, GOC has implemented several processes to increase quantity, quality and specificity GO annotations. First, number manual, literature-based annotations grown at an increasing rate. Second, as result new 'phylogenetic annotation' process, manually reviewed, homology-based...

10.1093/nar/gks1050 article EN cc-by-nc Nucleic Acids Research 2012-11-17

The correlation of phenotypic outcomes with genetic variation and environmental factors is a core pursuit in biology biomedicine. Numerous challenges impede our progress: patient phenotypes may not match known diseases, candidate variants be genes that have been characterized, model organisms recapitulate human or veterinary filling evolutionary gaps difficult, many resources must queried to find potentially significant genotype–phenotype associations. Non-human proven instrumental revealing...

10.1093/nar/gkw1128 article EN cc-by Nucleic Acids Research 2016-11-02

Abstract In biology and biomedicine, relating phenotypic outcomes with genetic variation environmental factors remains a challenge: patient phenotypes may not match known diseases, candidate variants be in genes that haven’t been characterized, research organisms recapitulate human or veterinary affecting disease are unknown undocumented, many resources must queried to find potentially significant associations. The Monarch Initiative (https://monarchinitiative.org) integrates information on...

10.1093/nar/gkz997 article EN cc-by Nucleic Acids Research 2019-10-15

Abstract The Alliance of Genome Resources (Alliance) is a consortium the major model organism databases and Gene Ontology that guided by vision facilitating exploration related genes in human well-studied organisms providing highly integrated comprehensive platform enables researchers to leverage extensive body genetic genomic studies these organisms. Initiated 2016, building central portal (www.alliancegenome.org) for access data primary along with gene ontology data. All types represented...

10.1093/nar/gkz813 article EN cc-by Nucleic Acids Research 2019-09-19

Biological ontologies are used to organize, curate and interpret the vast quantities of data arising from biological experiments. While this works well when using a single ontology, integrating multiple can be problematic, as they developed independently, which lead incompatibilities. The Open Biomedical Ontologies (OBO) Foundry was created address by facilitating development, harmonization, application sharing ontologies, guided set overarching principles. One challenge in reaching these...

10.1093/database/baab069 article EN cc-by Database 2021-10-01
Michael Gargano Nicolas Matentzoglu Ben Coleman Eunice B Addo-Lartey Anna V. Anagnostopoulos and 95 more Joel Anderton Paul Avillach Anita Bagley Eduard Bakštein James P. Balhoff Gareth Baynam Susan M. Bello Michael Berk Holli Bertram Somer Bishop Hannah Blau David F. Bodenstein Pablo Botas Kaan Boztuğ J Cady Tiffany J Callahan Rhiannon Cameron Seth Carbon F Castellanos J. Harry Caufield Lauren Chan Christopher G. Chute Jaime Cruz‐Rojo Noémi Dahan‐Oliel Jon R. Davids Maud de Dieuleveult Vinícius de Souza Bert B.A. de Vries Esther de Vries J. Raymond DePaulo Beáta Dérfalvi Ferdinand Dhombres Claudia Diaz‐Byrd Alexander J.M. Dingemans Bruno Donadille Michael H. Duyzend Reem Elfeky Shahim Essaid Carolina Fabrizzi Giovanna Fico Helen V. Firth Yun Freudenberg‐Hua Janice M. Fullerton Davera Gabriel Kimberly Gilmour Jessica L. Giordano Fernando S. Goes Rachel Gore Ian Green Matthias Griese Tudor Groza Weihong Gu Julia Guthrie Benjamin M. Gyori Ada Hamosh Marc Hanauer Kateřina Hanušová Yongqun He Harshad Hegde Ingo Helbig Kateřina Holasová Charles Tapley Hoyt Shangzhi Huang Eric Hurwitz Julius O.B. Jacobsen Xiaofeng Jiang Lisa Joseph Kamyar Keramatian Bryan King Katrin Knoflach David A. Koolen Megan L Kraus Carlo Kroll Maaike Kusters Markus S. Ladewig David Lagorce Meng‐Chuan Lai Pablo Lapunzina Bryan Laraway David Lewis‐Smith Xiarong Li Caterina Lucano Marzieh Majd Mary L. Marazita Víctor Martinez‐Glez Toby H McHenry Melvin G. McInnis Julie A. McMurry Michaela Mihulová Caitlin E. Millett Philip B. Mitchell Veronika Moslerová Kenji Narutomi Shahrzad Nematollahi Julián Nevado

Abstract The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference supporting genomic analyses through semantic similarity machine learning algorithms. HPO has widespread applications in clinical diagnostics translational research, including diagnostics, gene-disease discovery, cohort analytics. In recent years, groups around world have developed translations from English...

10.1093/nar/gkad1005 article EN cc-by Nucleic Acids Research 2023-11-11
Julie Agapite Laurent‐Philippe Albou Suzi Aleksander Micheal Alexander Anna V. Anagnostopoulos and 95 more Giulia Antonazzo Joanna Argasinska Valerio Arnaboldi Helen Attrill Andrés Becerra Susan M. Bello Judith A. Blake Olin Blodgett Yvonne M. Bradford Carol J. Bult Scott Cain Brian R. Calvi Seth Carbon Juancarlos Chan Wen J. Chen J. Michael Cherry Jaehyoung Cho Karen Christie Madeline A. Crosby Paul A. Davis Eduardo da Veiga Beltrame Jeffrey L De Pons Peter D’Eustachio Stavros Diamantakis M. Eileen Dolan Gilberto dos Santos Eric Douglass Barbara Dunn Anne Eagle Dustin Ebert Stacia R. Engel David Fashena Saoirse Foley Ken Frazer Sibyl Gao Adam C Gibson Felix Gondwe Josh Goodman L. Sian Gramates Christian A Grove Paul Hale Todd Harris G. Thomas Hayman David P. Hill Douglas G. Howe Kevin Howe Yanhui Hu Sagar Jha James A. Kadin Thomas C. Kaufman Patrick Kalita Kalpana Karra Ranjana Kishore Anne E. Kwitek Stanley J. F. Laulederkind Raymond Lee Ian Longden Manuel Luypaert Kevin MacPherson Ryan Martin Steven J Marygold Beverley Matthews Monica McAndrews Gillian Millburn Stuart R. Miyasato Howie Motenko Sierra Moxon Hans‐Michael Müller Chris Mungall Anushya Muruganujan Tremayne Mushayahama Harika S Nalabolu Robert S Nash Patrick Ng Paulo Nuin Holly Paddock Michael Paulini Norbert Perrimon Christian Pich Mark Quinton-Tulloch Daniela Raciti Sridhar Ramachandran Joel E. Richardson Susan Russo Gelbart Leyla Ruzicka Kevin Schaper Gary Schindelman Mary Shimoyama Matt Simison David Shaw Ajay Shrivatsav Amy Singer Marek S. Skrzypek Constance M. Smith Cynthia L. Smith

The Alliance of Genome Resources (the Alliance) is a combined effort 7 knowledgebase projects: Saccharomyces Database, WormBase, FlyBase, Mouse the Zebrafish Information Network, Rat and Gene Ontology Resource. seeks to provide several benefits: better service various communities served by these projects; harmonized view data for all biomedical researchers, bioinformaticians, clinicians, students; more sustainable infrastructure. has cross-organism useful comparative views gene function,...

10.1093/genetics/iyac022 article EN cc-by Genetics 2022-02-25
Suzi Aleksander Anna V. Anagnostopoulos Giulia Antonazzo Valerio Arnaboldi Helen Attrill and 95 more Andrés Becerra S Bello Olin Blodgett Yvonne M. Bradford Carol J. Bult Scott Cain Brian R. Calvi Seth Carbon Juancarlos Chan Wen J. Chen J. Michael Cherry Jaehyoung Cho Madeline A. Crosby Jeffrey L De Pons Peter D’Eustachio Stavros Diamantakis M. Eileen Dolan Gilberto dos Santos Sarah Dyer Dustin Ebert Stacia R. Engel David Fashena Malcolm E Fisher Saoirse Foley Adam C Gibson Varun Reddy Gollapally L. Sian Gramates Christian A Grove Paul Hale Todd Harris G. Thomas Hayman Yanhui Hu Christina James‐Zorn Kamran Karimi Kalpana Karra Ranjana Kishore Anne E. Kwitek Stanley J. F. Laulederkind Raymond Lee Ian Longden Manuel Luypaert Nicholas Markarian Steven J Marygold Beverley Matthews Monica McAndrews Gillian Millburn Stuart R. Miyasato Howie Motenko Sierra Moxon Hans‐Michael Müller Chris Mungall Anushya Muruganujan Tremayne Mushayahama Robert S Nash Paulo Nuin Holly Paddock Troy J. Pells Norbert Perrimon Christian Pich Mark Quinton-Tulloch Daniela Raciti Sridhar Ramachandran Joel E. Richardson Susan Russo Gelbart Leyla Ruzicka Gary Schindelman David Shaw Gavin Sherlock Ajay Shrivatsav Amy Singer Constance M. Smith Cynthia L. Smith Jennifer R. Smith Lincoln Stein Paul W. Sternberg Christopher J. Tabone Paul D. Thomas Ketaki Thorat Jyothi Thota Monika Tomczuk Vítor Trovisco Marek Tutaj Jose-Maria Urbano Kimberly Van Auken Ceri E. Van Slyke Peter D. Vize Qinghua Wang Shuai Weng Monte Westerfield Laurens Wilming Edith D. Wong Adam Wright Karen Yook Pinglei Zhou Aaron M. Zorn

Abstract The Alliance of Genome Resources (Alliance) is an extensible coalition knowledgebases focused on the genetics and genomics intensively studied model organisms. organized as individual knowledge centers with strong connections to their research communities a centralized software infrastructure, discussed here. Model organisms currently represented in are budding yeast, Caenorhabditis elegans, Drosophila, zebrafish, frog, laboratory mouse, rat, Gene Ontology Consortium. project rapid...

10.1093/genetics/iyae049 article EN cc-by Genetics 2024-03-29
Judith A. Blake M. Eileen Dolan Harold Drabkin David P. Hill L. Ni and 95 more Д. С. Ситников Shane C. Burgess Teresia Buza Charles A. Gresham Fiona M. McCarthy Lakshmi Pillai Hui Wang Seth Carbon Suzanna Lewis Chris Mungall Pascale Gaudet Rex L. Chisholm Petra Fey Warren A. Kibbe Siddhartha Basu Deborah A. Siegele Brenley K. McIntosh Daniel P. Renfro Adrienne E. Zweifel James C. Hu Nicholas H. Brown Susan Tweedie Yasmin Alam-Faruque Rolf Apweiler A Auchinchloss Kristian B. Axelsen Ghislaine Argoud‐Puy Benoît Bely Marie-Claude Blatter Lydie Bougueleret Emmanuel Boutet S. Branconi-Quintaje Lionel Breuza Alan Bridge P. Browne Paul K.S. Chan Elisabeth Coudert Isabelle Cusin Emily Dimmer P. Duek-Roggli Ruth Y. Eberhardt Anne Estreicher L. Famiglietti S. Ferro-Rojas Marc Feuermann M. Gardner Arnaud Gos Nadine Gruaz-Gumowski Ursula Hinz Chantal Hulo Rachael P. Huntley Joachim James Silvia Jiménez Florence Jungo G. Keller Kati Laiho David Legge Philippe Le Mercier Damien Lieberherr Michele Magrane María Martin Patrick Masson M. Moinat Claire O’Donovan Ivo Pedruzzi Klemens Pichler Daniele Giovanni Poggioli Pablo Porras Sylvain Poux Catherine Rivoire Bernd Roechert Tony Sawford Michel Schneider Harminder Sehra Eleanor Stanley André Stutz Suresh Sundaram Michael Tognolli Ioannis Xénarios Rebecca E. Foulger Jane Lomax Paola Roncaglia Evelyn Camon Varsha Khodiyar Ruth C. Lovering Philippa J. Talmud Marcus C. Chibucos Michelle Giglio Kara Dolinski Sven Heinicke Michael Livstone Robert Paul Stephan Midori A. Harris Stephen G. Oliver Kim Rutherford

The Gene Ontology (GO) (http://www.geneontology.org) is a community bioinformatics resource that represents gene product function through the use of structured, controlled vocabularies. number GO annotations products has increased due to curation efforts among Consortium (GOC) groups, including focused literature-based annotation and ortholog-based functional inference. ontologies continue expand improve as result targeted ontology development, introduction computable logical definitions...

10.1093/nar/gkr1028 article EN cc-by-nc Nucleic Acids Research 2011-11-18

The Gene Ontology (GO) is a collaborative effort that provides structured vocabularies for annotating the molecular function, biological role, and cellular location of gene products in highly systematic way species-neutral manner with aim unifying representation function across different organisms. Each contributing member GO Consortium independently associates terms to from organism(s) they are annotating. Here we introduce Reference Genome project, which brings together those independent...

10.1371/journal.pcbi.1000431 article EN cc-by PLoS Computational Biology 2009-07-02

The Planteome project (http://www.planteome.org) provides a suite of reference and species-specific ontologies for plants annotations to genes phenotypes. Ontologies serve as common standards semantic integration large growing corpus plant genomics, phenomics genetics data. include the Plant Ontology, Trait Ontology Experimental Conditions developed by project, along with Gene Chemical Entities Biological Interest, Phenotype Attribute others. also access Crop various breeding research...

10.1093/nar/gkx1152 article EN cc-by-nc Nucleic Acids Research 2017-11-21

In an effort to comprehensively characterize the functional elements within genomes of important model organisms Drosophila melanogaster and Caenorhabditis elegans, NHGRI organism Encyclopaedia DNA Elements (modENCODE) consortium has generated enormous library genomic data along with detailed, structured information on all aspects experiments. The modMine database (http://intermine.modencode.org) described here been built by modENCODE Data Coordination Center allow broader research community...

10.1093/nar/gkr921 article EN cc-by-nc Nucleic Acids Research 2011-11-12

The Gene Ontology project integrates data about the function of gene products across a diverse range organisms, allowing transfer knowledge from model organisms to humans, and enabling computational analyses for interpretation high-throughput experimental clinical data. core structure is annotation, an association between product term one three ontologies comprising GO. Historically, it has not been possible provide additional information context GO term, such as target or location molecular...

10.1186/1471-2105-15-155 article EN cc-by BMC Bioinformatics 2014-05-21

Integrated, up-to-date data about SARS-CoV-2 and COVID-19 is crucial for the ongoing response to pandemic by biomedical research community. While rich biological knowledge exists related viruses (SARS-CoV, MERS-CoV), integrating this difficult time-consuming, since much of it in siloed databases or textual format. Furthermore, required community vary drastically different tasks; optimal a machine learning task, example, from used populate browsable user interface clinicians. To address these...

10.1016/j.patter.2020.100155 article EN cc-by Patterns 2020-11-09

Abstract Similar to managing software packages, the ontology life cycle involves multiple complex workflows such as preparing releases, continuous quality control checking and dependency management. To manage these processes, a diverse set of tools is required, from command-line utilities powerful ontology-engineering environmentsr. Particularly in biomedical domain, which has developed highly yet inter-dependent ontologies, standardizing release practices metadata establishing shared...

10.1093/database/baac087 article EN cc-by-nc Database 2022-01-01

Bridging the gap between genetic variations, environmental determinants, and phenotypic outcomes is critical for supporting clinical diagnosis understanding mechanisms of diseases. It requires integrating open data at a global scale. The Monarch Initiative advances these goals by developing ontologies, semantic models, knowledge graphs translational research. App an integrated platform combining about genes, phenotypes, diseases across species. Monarch's APIs enable access to carefully...

10.1093/nar/gkad1082 article EN cc-by Nucleic Acids Research 2023-11-24

The principles of genetics apply across the entire tree life. At cellular level we share biological mechanisms with species from which diverged millions, even billions years ago. We can exploit this common ancestry to learn about health and disease, by analyzing DNA protein sequences, but also through observable outcomes genetic differences, i.e. phenotypes. To solve challenging disease problems need unify heterogeneous data that relates genomics traits. Without a big-picture view phenotypic...

10.1534/genetics.116.188870 article EN Genetics 2016-08-01
Marc Feuermann Huaiyu Mi Pascale Gaudet Anushya Muruganujan Suzanna Lewis and 95 more Dustin Ebert Tremayne Mushayahama Suzi Aleksander James P. Balhoff Seth Carbon J. Michael Cherry Harold Drabkin Nomi L. Harris David P. Hill Raymond Lee Colin Logie Sierra Moxon Chris Mungall Paul W. Sternberg Kimberly Van Auken Jolene Ramsey Deborah A. Siegele Rex L. Chisholm Petra Fey Michelle Giglio Suvarna Nadendla Giulia Antonazzo Helen Attrill Nicholas H. Brown Phani Garapati Steven J Marygold Saadullah H. Ahmed Praoparn Asanitthong Diana Luna Buitrago Meltem N Erdol Matthew Gage SI-YAO HUANG Mohamed Ali Kadhum Kan Yan Chloe Li Miao Long Aleksandra Michalak Angeline Pesala Armalya Pritazahra Shirin C C Saverimuttu Renzhi Su Qiang Xu Ruth C. Lovering Judith A. Blake Karen Christie Lori E Corbani M. Eileen Dolan Li Ni Dmitry Sitnikov Cynthia L. Smith Manuel Lera-Ramírez Kim Rutherford Valerie Wood Peter D’Eustachio Wendy Demos Jeffrey L De Pons Melinda R. Dwinell G. Thomas Hayman Mary L. Kaldunski Anne E. Kwitek Stanley J. F. Laulederkind Jennifer R. Smith Marek Tutaj Mahima Vedi Shur‐Jen Wang Stacia R. Engel Kalpana Karra Stuart R. Miyasato Robert S Nash Marek S. Skrzypek Shuai Weng Edith D. Wong Tilmann Achsel Maria Andres‐Alonso Claudia Bagni Àlex Bayés Thomas Biederer Nils Brose John Jia En Chua Marcelo P. Coba L. Niels Cornelisse Jaime de Juan‐Sanz Hana L. Goldschmidt Eckart D. Gundelfinger Richard L. Huganir Cordelia Imig Reinhard Jahn Hwajin Jung Pascal S. Kaeser Eunjoon Kim Frank Koopmans Michael R. Kreutz Noa Lipstein Harold D. MacGillavry Peter S. McPherson Vincent O’Connor

Abstract A comprehensive, computable representation of the functional repertoire all macromolecules encoded within human genome is a foundational resource for biology and biomedical research. The Gene Ontology Consortium has been working towards this goal by generating structured body information about gene functions, which now includes experimental findings reported in more than 175,000 publications genes experimentally tractable model organisms 1,2 . Here, we describe results large,...

10.1038/s41586-025-08592-0 article EN cc-by Nature 2025-02-26

Knowledge graphs (KGs) are a powerful approach for integrating heterogeneous data and making inferences in biology many other domains, but coherent solution constructing, exchanging, facilitating the downstream use of KGs is lacking.

10.1093/bioinformatics/btad418 article EN cc-by Bioinformatics 2023-06-30
Coming Soon ...