Faisal Alquaddoomi

ORCID: 0000-0003-4297-8747
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Bioinformatics and Genomic Networks
  • Single-cell and spatial transcriptomics
  • Green IT and Sustainability
  • Cancer Genomics and Diagnostics
  • Biomedical Text Mining and Ontologies
  • Innovative Human-Technology Interaction
  • Gene expression and cancer classification
  • COVID-19 Digital Contact Tracing
  • Genomics and Phylogenetic Studies
  • Advanced Graph Neural Networks
  • COVID-19 epidemiological studies
  • Genomics and Rare Diseases
  • Academic Publishing and Open Access
  • Cell Image Analysis Techniques
  • Misinformation and Its Impacts
  • Context-Aware Activity Recognition Systems
  • Gut microbiota and health
  • BRCA gene mutations in cancer
  • Spam and Phishing Detection
  • Immune cells in cancer
  • Cloud Computing and Resource Management
  • Human Mobility and Location-Based Analysis
  • Peer-to-Peer Network Technologies
  • Recommender Systems and Techniques
  • Personal Information Management and User Behavior

SIB Swiss Institute of Bioinformatics
2020-2024

Colorado School of Public Health
2023

ETH Zurich
2020-2023

University of Colorado Denver
2022-2023

University of Colorado Anschutz Medical Campus
2023

University of California, Los Angeles
2012-2018

University of Zurich
2018

University Hospital of Zurich
2018

UCLA Health
2013-2015

The BRCA Challenge is a long-term data-sharing project initiated within the Global Alliance for Genomics and Health (GA4GH) to aggregate BRCA1 BRCA2 data support highly collaborative research activities. Its goal generate an informed current understanding of impact genetic variation on cancer risk across iconic predisposition genes, BRCA2. Initially, reported variants in available from public databases were integrated into single, newly created site, www.brcaexchange.org. purpose Exchange...

10.1371/journal.pgen.1007752 article EN public-domain PLoS Genetics 2018-12-26
Anja Irmisch Ximena Bonilla Stéphane Chevrier Kjong-Van Lehmann Franziska Singer and 95 more Nora C. Toussaint Cinzia Esposito Julien Mena Emanuela S. Milani Ruben Casanova Daniel J. Stekhoven Rebekka Wegmann Francis Jacob Bettina Sobottka Sandra Goetze Jack Kuipers Jacobo Sarabia del Castillo Michael Prummer Mustafa A. Tuncel Ulrike Menzel Alice K. Jacobs Stefanie Engler Sujana Sivapatham Anja Frei Gabriele Gut Joanna Ficek Nicola Miglino Rudolf Aebersold Marina Bacac Niko Beerenwinkel Christian Beisel Bernd Bodenmiller Reinhard Dummer Viola Heinzelmann‐Schwarz Viktor H. Koelzer Markus G. Manz Holger Moch Lucas Pelkmans Berend Snijder Alexandre Theocharides Markus Tolnay Andreas Wicki Bernd Wollscheid Gunnar Rätsch Mitchell P. Levesque Melike Ak Faisal Alquaddoomi Jonas Albinus Ilaria Alborelli Sonali Andani Per-Olof Attinger Daniel Baumhoer Beatrice Beck‐Schimmer Lara Bernasconi Anne Bertolini Natalia Chicherova Maya D’Costa Esther Danenberg Natalie R. Davidson Monica-Andreea Drăgan Martin Erkens Katja Eschbach André Fedier Pedro Ferreira Bruno S. Frey Linda Grob Detlef Günther Martina Haberecker Pirmin Haeuptle Sylvia Herter René Holtackers Tamara Huesser Tim M. Jaeger Katharina Jahn Alva Rani James Philip Jermann André Kahles Abdullah Kahraman Werner Kuebler Christian P. Kunze Christian Kurzeder Sebastian Lugert Gerd Maass Philipp Markolin Julian M. Metzler Simone Muenst Riccardo Murri Charlotte K.Y. Ng Stefan Nicolet Marta Nowak Patrick G. A. Pedrioli Salvatore Piscuoglio Mathilde Ritter Christian Rommel María L. Rosano-González Natascha Santacroce Ramona Schlenker Petra Schwalie Severin Schwan Tobias Schär

10.1016/j.ccell.2021.01.004 article EN publisher-specific-oa Cancer Cell 2021-01-21

Bridging the gap between genetic variations, environmental determinants, and phenotypic outcomes is critical for supporting clinical diagnosis understanding mechanisms of diseases. It requires integrating open data at a global scale. The Monarch Initiative advances these goals by developing ontologies, semantic models, knowledge graphs translational research. App an integrated platform combining about genes, phenotypes, diseases across species. Monarch's APIs enable access to carefully...

10.1093/nar/gkad1082 article EN cc-by Nucleic Acids Research 2023-11-24
Stefan G. Stark Joanna Ficek Francesco Locatello Ximena Bonilla Stéphane Chevrier and 95 more Franziska Singer Rudolf Aebersold Faisal Alquaddoomi Jonas Albinus Ilaria Alborelli Sonali Andani Per-Olof Attinger Marina Bacac Daniel Baumhoer Beatrice Beck‐Schimmer Niko Beerenwinkel Christian Beisel Lara Bernasconi Anne Bertolini Bernd Bodenmiller Ximena Bonilla Ruben Casanova Stéphane Chevrier Natalia Chicherova Maya D’Costa Esther Danenberg Natalie R. Davidson Monica-Andreea Dră gan Reinhard Dummer Stefanie Engler Martin Erkens Katja Eschbach Cinzia Esposito André Fedier Pedro Ferreira Joanna Ficek Anja Frei Bruno S. Frey Sandra Goetze Linda Grob Gabriele Gut Detlef Günther Martina Haberecker Pirmin Haeuptle Viola Heinzelmann‐Schwarz Sylvia Herter René Holtackers Tamara Huesser Anja Irmisch Francis Jacob Alice K. Jacobs Tim M. Jaeger Katharina Jahn Alva Rani James Philip Jermann André Kahles Abdullah Kahraman Viktor H. Koelzer Werner Kuebler Jack Kuipers Christian P. Kunze Christian Kurzeder Kjong-Van Lehmann Mitchell Levesque Sebastian Lugert Gerd Maass Markus G. Manz Philipp Markolin Julien Mena Ulrike Menzel Julian M. Metzler Nicola Miglino Emanuela S. Milani Holger Moch Simone Muenst Riccardo Murri Charlotte K.Y. Ng Stefan Nicolet Marta Nowak Patrick G. A. Pedrioli Lucas Pelkmans Salvatore Piscuoglio Michael Prummer Mathilde Ritter Christian Rommel María L. Rosano-González Gunnar Rätsch Natascha Santacroce Jacobo Sarabia del Castillo Ramona Schlenker Petra Schwalie Severin Schwan Tobias Schär Gabriela Senti Franziska Singer Sujana Sivapatham Berend Snijder Bettina Sobottka Vipin T. Sreedharan Stefan G. Stark

Recent technological advances have led to an increase in the production and availability of single-cell data. The ability integrate a set multi-technology measurements would allow identification biologically or clinically meaningful observations through unification perspectives afforded by each technology. In most cases, however, profiling technologies consume used cells thus pairwise correspondences between datasets are lost. Due sheer size can acquire, scalable algorithms that able...

10.1093/bioinformatics/btaa843 article EN cc-by Bioinformatics 2020-09-14
Arthur Dondi Ulrike Lischetti Francis Jacob Franziska Singer Nico Borgsmüller and 95 more Ricardo Coelho Rudolf Aebersold Melike Ak Faisal Alquaddoomi Silvana I. Albert Jonas Albinus Ilaria Alborelli Sonali Andani Per-Olof Attinger Marina Bacac Daniel Baumhoer Beatrice Beck‐Schimmer Christian Beisel Lara Bernasconi Anne Bertolini Bernd Bodenmiller Ximena Bonilla Lars Bosshard Byron Calgua Ruben Casanova Stéphane Chevrier Natalia Chicherova Maya D’Costa Esther Danenberg Natalie J. Davidson Monica-Andreea Drăgan Reinhard Dummer Stefanie Engler Martin Erkens Katja Eschbach Cinzia Esposito André Fedier Pedro Ferreira Joanna Ficek Anja Frei Bruno S. Frey Sandra Goetze Linda Grob Gabriele Gut Detlef Günther Martina Haberecker Pirmin Haeuptle Sylvia Herter René Holtackers Tamara Huesser Alexander Immer Anja Irmisch Alice K. Jacobs Tim M. Jaeger Katharina Jahn Alva Rani James Philip Jermann André Kahles Abdullah Kahraman Viktor H. Koelzer Werner Kuebler Jack Kuipers Christian P. Kunze Christian Kurzeder Kjong-Van Lehmann Mitchell Levesque Ulrike Lischetti Sebastian Lugert Gerd Maass Markus G. Manz Philipp Markolin Martin Mehnert Julien Mena Julian M. Metzler Nicola Miglino Emanuela S. Milani Holger Moch Simone Muenst Riccardo Murri Charlotte K.Y. Ng Stefan Nicolet Marta Nowak Mónica Núñez López Patrick G. A. Pedrioli Lucas Pelkmans Salvatore Piscuoglio Michael Prummer Natalie Rimmer Mathilde Ritter Christian Rommel María L. Rosano-González Gunnar Rätsch Natascha Santacroce Jacobo Sarabia del Castillo Ramona Schlenker Petra Schwalie Severin Schwan Tobias Schär Gabriela Senti Wenguang Shao

Understanding the complex background of cancer requires genotype-phenotype information in single-cell resolution. Here, we perform long-read RNA sequencing (scRNA-seq) on clinical samples from three ovarian patients presenting with omental metastasis and increase PacBio depth to 12,000 reads per cell. Our approach captures 152,000 isoforms, which over 52,000 were not previously reported. Isoform-level analysis accounting for non-coding isoforms reveals 20% overestimation protein-coding gene...

10.1038/s41467-023-43387-9 article EN cc-by Nature Communications 2023-11-27

We present ohmage, a mobile to web platform that records, analyzes, and visualizes data from both prompted experience samples entered by the user, as well continuous streams of passively collected sensors onboard device. ohmage has been used in number research health stu

10.4108/icst.pervasivehealth.2012.248705 article EN 2012-01-01

Participatory sensing (PS) is a distributed data collection and analysis approach where individuals, acting alone or in groups, use their personal mobile devices to systematically explore interesting aspects of lives communities [Burke et al. 2006]. These can be used capture diverse spatiotemporal through both intermittent self-report continuous recording from on-board sensors applications. Ohmage (http://ohmage.org) modular extensible open-source, Web PS platform that records, stores,...

10.1145/2717318 article EN ACM Transactions on Intelligent Systems and Technology 2015-04-21
Bettina Sobottka Marta Nowak Anja Frei Martina Haberecker Samuel Merki and 95 more Mitchell P. Levesque Reinhard Dummer H. Moch Viktor H. Koelzer Rudolf Aebersold Melike Ak Faisal Alquaddoomi Jonas Albinus Ilaria Alborelli Sonali Andani Per-Olof Attinger Marina Bacac Daniel Baumhoer Beatrice Beck‐Schimmer Niko Beerenwinkel Christian Beisel Lara Bernasconi Anne Bertolini Bernd Bodenmiller Ximena Bonilla Ruben Casanova Stéphane Chevrier Natalia Chicherova Maya D’Costa Esther Danenberg Natalie J. Davidson Monica-Andreea Drăganmoch Stefanie Engler Martin Erkens Katja Eschbach Cinzia Esposito André Fedier Pedro Ferreira Joanna Ficek Bruno S. Frey Sandra Goetze Linda Grob Gabriele Gut Detlef Günther Martina Haberecker Pirmin Haeuptle Viola Heinzelmann‐Schwarz Sylvia Herter René Holtackers Tamara Huesser Anja Irmisch Francis Jacob Alice K. Jacobs Tim M. Jaeger Katharina Jahn Alva Rani James Philip Jermann André Kahles Abdullah Kahraman Werner Kuebler Jack Kuipers Christian P. Kunze Christian Kurzeder Kjong-Van Lehmann Sebastian Lugert Gerd Maass Markus G. Manz Philipp Markolin Julien Mena Ulrike Menzel Julian M. Metzler Nicola Miglino Emanuela S. Milani Simone Muenst Riccardo Murri Charlotte K.Y. Ng Stefan Nicolet Patrick G. A. Pedrioli Lucas Pelkmans Salvatore Piscuoglio Michael Prummer Mathilde Ritter Christian Rommel María L. Rosano-González Gunnar Rätsch Natascha Santacroce Jacobo Sarabia del Castillo Ramona Schlenker Petra Schwalie Severin Schwan Tobias Schär Gabriela Senti Franziska Singer Sujana Sivapatham Berend Snijder Vipin T. Sreedharan Stefan G. Stark Daniel J. Stekhoven Alexandre Theocharides Tinu M. Thomas

CD8+ tumor-infiltrating T cells can be regarded as one of the most relevant predictive biomarkers in immune-oncology. Highly infiltrated tumors, referred to inflamed (clinically "hot"), show favorable response immune checkpoint inhibitors contrast tumors with a scarce infiltrate called desert or excluded "cold"). Nevertheless, quantitative and reproducible methods examining their prevalence within are lacking. We therefore established computational diagnostic algorithm quantitatively measure...

10.1038/s41374-021-00653-y article EN cc-by Laboratory Investigation 2021-08-26

Smartphones can capture diverse spatio-temporal data about an individual; including both intermittent self-report, and continuous passive collection from onboard sensors applications. The resulting personal streams support powerful inference the user's state, behavior, well-being environment. However making sense acting on these multi-dimensional, heterogeneous requires iterative intensive exploration of datasets, development customized analysis techniques that are appropriate for a...

10.1145/2517351.2517368 article EN 2013-10-22
Rebekka Wegmann Ximena Bonilla Ruben Casanova Stéphane Chevrier Ricardo Coelho and 95 more Cinzia Esposito Joanna Ficek-Pascual Sandra Goetze Gabriele Gut Francis Jacob Alice K. Jacobs Jack Kuipers Ulrike Lischetti Julien Mena Emanuela S. Milani Michael Prummer Jacobo Sarabia del Castillo Franziska Singer Sujana Sivapatham Nora C. Toussaint Olivér Vilinovszki Mattheus H. E. Wildschut Tharshika Thavayogarajah Disha Malani Ruedi Aebersold Melike Ak Faisal Alquaddoomi Silvana I. Albert Jonas Albinus Ilaria Alborelli Sonali Andani Per-Olof Attinger Marina Bacac Daniel Baumhoer Beatrice Beck‐Schimmer Niko Beerenwinkel Christian Beisel Lara Bernasconi Anne Bertolini Bernd Bodenmiller Ximena Bonilla Lars Bosshard Byron Calgua Natalia Chicherova Maya D’Costa Esther Danenberg Natalie R. Davidson Monica-Andreea Drăgan Reinhard Dummer Stefanie Engler Martin Erkens Katja Eschbach Cinzia Esposito André Fedier Pedro Ferreira Joanna Ficek-Pascual Anja Frei Bruno S. Frey Sandra Goetze Linda Grob Gabriele Gut Detlef Günther Pirmin Haeuptle Viola Heinzelmann‐Schwarz Sylvia Herter René Holtackers Tamara Huesser Alexander Immer Anja Irmisch Tim M. Jaeger Katharina Jahn Alva Rani James Philip Jermann André Kahles Abdullah Kahraman Viktor H. Koelzer Werner Kuebler Jack Kuipers Christian P. Kunze Christian Kurzeder Kjong-Van Lehmann Mitchell P. Levesque Flavio Lombardo Sebastian Lugert Gerd Maass Philipp Markolin Martin Mehnert Julien Mena Julian M. Metzler Nicola Miglino Holger Moch Simone Muenst Riccardo Murri Charlotte K.Y. Ng Stefan Nicolet Marta Nowak Mónica Núñez López Patrick G. A. Pedrioli Lucas Pelkmans Salvatore Piscuoglio

Deep single-cell multi-omic profiling offers a promising approach to understand and overcome drug resistance in relapsed or refractory (rr) acute myeloid leukemia (AML). Here, we combine ex vivo (pharmacoscopy) with bulk DNA, RNA, protein analyses, alongside clinical data from 21 rrAML patients. Unsupervised integration reveals reduced response the Bcl-2 inhibitor venetoclax (VEN) patients treated both hypomethylating agent (HMA) VEN, compared those pre-exposed chemotherapy HMA alone....

10.1038/s41467-024-53535-4 article EN cc-by-nc-nd Nature Communications 2024-10-30

Studying proteins through the lens of evolution can reveal conserved features, lineage-specific variants, and their potential functions. MolEvolvR (https://jravilab.org/molevolvr) is a novel web-app enabling researchers to visualize molecular interest in phylogenetic context across tree life, spanning all superkingdoms. The accepts multiple input formats — protein/domain sequences, homologous proteins, or domain scans and, using general-purpose computational workflow, returns detailed...

10.1101/2022.02.18.461833 preprint EN cc-by bioRxiv (Cold Spring Harbor Laboratory) 2022-02-22

Information is the most potent protective weapon we have to combat a pandemic, at both individual and global level. For individuals, information can help us make personal decisions provide sense of security. community, inform policy offer critical insights into epidemic COVID-19 disease. Fully leveraging power information, however, requires large amounts data access it. To achieve this, are making steps form an international consortium, Coronavirus Census Collective (CCC,...

10.1101/2020.04.02.20051284 preprint EN cc-by-nd medRxiv (Cold Spring Harbor Laboratory) 2020-04-06
Michael Prummer Anne Bertolini Lars Bosshard Florian Barkmann Josephine Yates and 95 more Valentina Boeva Rudolf Aebersold Melike Ak Faisal Alquaddoomi Jonas Albinus Ilaria Alborelli Sonali Andani Per-Olof Attinger Marina Bacac Daniel Baumhoer Beatrice Beck‐Schimmer Niko Beerenwinkel Christian Beisel Lara Bernasconi Anne Bertolini Bernd Bodenmiller Ximena Bonilla Lars Bosshard Byron Calgua Ruben Casanova Stéphane Chevrier Natalia Chicherova Maya D’Costa Esther Danenberg Natalie J. Davidson Monica-Andreea Drăgan Reinhard Dummer Stefanie Engler Martin Erkens Katja Eschbach Cinzia Esposito André Fedier Pedro Ferreira Joanna Ficek Anja Frei Bruno S. Frey Sandra Goetze Linda Grob Gabriele Gut Detlef Günther Martina Haberecker Pirmin Haeuptle Viola Heinzelmann‐Schwarz Sylvia Herter René Holtackers Tamara Huesser Anja Irmisch Francis Jacob Alice K. Jacobs Tim M. Jaeger Katharina Jahn Alva Rani James Philip Jermann André Kahles Abdullah Kahraman Viktor H. Koelzer Werner Kuebler Jack Kuipers Christian P. Kunze Christian Kurzeder Kjong-Van Lehmann Mitchell Levesque Sebastian Lugert Gerd Maass Markus G. Manz Philipp Markolin Julien Mena Ulrike Menzel Julian M. Metzler Nicola Miglino Emanuela S. Milani Holger Moch Simone Muenst Riccardo Murri Charlotte K.Y. Ng Stefan Nicolet Marta Nowak Patrick G. A. Pedrioli Lucas Pelkmans Salvatore Piscuoglio Michael Prummer Mathilde Ritter Christian Rommel María L. Rosano-González Gunnar Rätsch Natascha Santacroce Jacobo Sarabia del Castillo Ramona Schlenker Petra Schwalie Severin Schwan Tobias Schär Gabriela Senti Franziska Singer Sujana Sivapatham Berend Snijder

Abstract Identifying cell types based on expression profiles is a pillar of single analysis. Existing machine-learning methods identify predictive features from annotated training data, which are often not available in early-stage studies. This can lead to overfitting and inferior performance when applied new data. To address these challenges we present scROSHI, utilizes previously obtained type-specific gene lists does require or the existence By respecting hierarchical nature type...

10.1093/nargab/lqad058 article EN cc-by NAR Genomics and Bioinformatics 2022-06-01

Abstract Background Hetnets, short for “heterogeneous networks,” contain multiple node and relationship types offer a way to encode biomedical knowledge. One such example, Hetionet, connects 11 of nodes—including genes, diseases, drugs, pathways, anatomical structures—with over 2 million edges 24 types. Previous work has demonstrated that supervised machine learning methods applied networks can identify drug repurposing opportunities. However, training set known relationships does not exist...

10.1093/gigascience/giad047 article EN cc-by GigaScience 2022-12-28
Alexander Immer Stefan G. Stark Francis Jacob Ximena Bonilla Tinu Thomas and 95 more André Kahles Sandra Goetze Emanuela S. Milani Bernd Wollscheid Rudolf Aebersold Melike Ak Faisal Alquaddoomi Silvana I. Albert Jonas Albinus Ilaria Alborelli Sonali Andani Per-Olof Attinger Marina Bacac Daniel Baumhoer Beatrice Beck‐Schimmer Niko Beerenwinkel Christian Beisel Lara Bernasconi Anne Bertolini Bernd Bodenmiller Ximena Bonilla Lars Bosshard Byron Calgua Ruben Casanova Stéphane Chevrier Natalia Chicherova Ricardo Coelho Maya D’Costa Esther Danenberg Natalie R. Davidson Monica-Andreea Drăgan Reinhard Dummer Stefanie Engler Martin Erkens Katja Eschbach Cinzia Esposito André Fedier Pedro Ferreira Joanna Ficek-Pascual Anja Frei Bruno S. Frey Sandra Goetze Linda Grob Gabriele Gut Detlef Günther Pirmin Haeuptle Viola Heinzelmann‐Schwarz Sylvia Herter René Holtackers Tamara Huesser Alexander Immer Anja Irmisch Francis Jacob Alice K. Jacobs Tim M. Jaeger Katharina Jahn Alva Rani James Philip Jermann André Kahles Abdullah Kahraman Viktor H. Koelzer Werner Kuebler Jack Kuipers Christian P. Kunze Christian Kurzeder Kjong-Van Lehmann Mitchell Levesque Ulrike Lischetti Flavio Lombardo Sebastian Lugert Gerd Maass Markus G. Manz Philipp Markolin Martin Mehnert Julien Mena Julian M. Metzler Nicola Miglino Emanuela S. Milani Holger Moch Simone Muenst Riccardo Murri Charlotte K.Y. Ng Stefan Nicolet Marta Nowak Mónica Núñez López Patrick G. A. Pedrioli Lucas Pelkmans Salvatore Piscuoglio Michael Prummer Prélot Laurie Natalie Rimmer Mathilde Ritter Christian Rommel María L. Rosano-González Gunnar Rätsch

Multimodal profiling strategies promise to produce more informative insights into biomedical cohorts via the integration of information each modality contributes. To perform this integration, however, development novel analytical is needed. often come at expense lower sample numbers, which can challenge methods uncover shared signals across a cohort. Thus, factor analysis approaches are commonly used for high-dimensional data in molecular biology, they typically do not yield representations...

10.1093/bioinformatics/btae216 article EN cc-by Bioinformatics 2024-04-12

While we often think of words as having a fixed meaning that use to describe changing world, are also dynamic and changing. Scientific research can be remarkably fast-moving, with new concepts or approaches rapidly gaining mind share. We examined scientific writing, both preprint pre-publication peer-reviewed text, identify terms have changed examine their use. One particular challenge faced was the shift from closed open access publishing meant size available corpora by over an order...

10.1186/s13040-023-00332-2 article EN cc-by BioData Mining 2023-05-05

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces B and T cell responses, contributing to virus neutralization. In a cohort of 2,911 young adults, we identified 65 individuals who had an asymptomatic or mildly symptomatic SARS-CoV-2 infection characterized their humoral responses the Spike (S), Nucleocapsid (N) Membrane (M) proteins. We found that previous induced CD4 cells vigorously responded pools peptides derived from S N By using statistical machine learning...

10.3389/fimmu.2023.1158905 article EN cc-by Frontiers in Immunology 2023-05-29
Coming Soon ...