Tiffany Eulalio

ORCID: 0000-0002-7084-9646
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Genetic Associations and Epidemiology
  • Epigenetics and DNA Methylation
  • Bioinformatics and Genomic Networks
  • Machine Learning in Healthcare
  • RNA modifications and cancer
  • Single-cell and spatial transcriptomics
  • Artificial Intelligence in Healthcare and Education
  • Genomics and Rare Diseases
  • RNA Research and Splicing
  • Genomics and Chromatin Dynamics
  • Molecular Biology Techniques and Applications
  • Autism Spectrum Disorder Research
  • Explainable Artificial Intelligence (XAI)
  • Advanced Proteomics Techniques and Applications
  • Genetics, Aging, and Longevity in Model Organisms
  • Housing Market and Economics
  • Dementia and Cognitive Impairment Research
  • Genetics and Neurodevelopmental Disorders
  • Emergency and Acute Care Studies
  • Genetic Syndromes and Imprinting
  • COVID-19 diagnosis using AI
  • Medical Coding and Health Information
  • Telomeres, Telomerase, and Senescence
  • Acute Myeloid Leukemia Research
  • Cancer-related molecular mechanisms research

Stanford University
2020-2025

Thermo Fisher Scientific (Sweden)
2020

University of Hawaiʻi at Mānoa
2018

François Aguet Shankara Anand Kristin Ardlie Stacey Gabriel Gad Getz and 95 more Aaron Graubert Kane Hadley Robert E. Handsaker Katherine Huang Seva Kashin Xiao Li Daniel G. MacArthur Samuel R. Meier Jared L. Nedzel Duyen T. Nguyen Ayellet V. Segrè Ellen Todres Brunilda Balliu Alvaro Barbeira Alexis Battle Rodrigo Bonazzola Andrew Brown Christopher Brown Stephane E. Castel Donald F. Conrad Daniel J. Cotter Nancy J. Cox Sayantan Das Olivia M. de Goede Emmanouil T. Dermitzakis Jonah Einson Barbara E. Engelhardt Eleazar Eskin Tiffany Eulalio Nicole M. Ferraro Elise D. Flynn Laure Frésard Eric R. Gamazon Diego Garrido-Martín Nicole R. Gay Michael J. Gloudemans Roderic Guigó Andrew R. Hame Yuan He Paul Hoffman Farhad Hormozdiari Lei Hou Hae Kyung Im Brian Jo Silva Kasela Manolis Kellis Sarah Kim-Hellmuth Alan Kwong Tuuli Lappalainen Xin Li Yanyu Liang Serghei Mangul Pejman Mohammadi Stephen B. Montgomery Manuel Muñoz-Aguirre Daniel Nachun Andrew B. Nobel Meritxell Oliva YoSon Park Yongjin Park Princy Parsana Abhiram Rao Ferrán Reverter John M. Rouhana Chiara Sabatti Ashis Saha Matthew Stephens Barbara E. Stranger Benjamin J. Strober Nicole A. Teran Ana Viñuela Gao Wang Xiaoquan Wen Fred A. Wright Valentin Wucher Yuxin Zou Pedro G. Ferreira Gen Li Marta Melé Esti Yeger‐Lotem Mary E. Barcus Debra Bradbury Tanya Krubit Jeffrey A. McLean Liqun Qi Karna Robinson Nancy Roche Anna Marie Smith Leslie H. Sobin David E. Tabor Anita H. Undale Jason Bridge Lori E. Brigham Barbara A. Foster Bryan M. Gillard

The Genotype-Tissue Expression (GTEx) project dissects how genetic variation affects gene expression and splicing.

10.1126/science.aaz1776 article EN public-domain Science 2020-09-10
Meritxell Oliva Manuel Muñoz-Aguirre Sarah Kim-Hellmuth Valentin Wucher Ariel DH Gewirtz and 95 more Daniel J. Cotter Princy Parsana Silva Kasela Brunilda Balliu Ana Viñuela Stephane E. Castel Pejman Mohammadi François Aguet Yuxin Zou Ekaterina Khramtsova Andrew D. Skol Diego Garrido-Martín Ferrán Reverter Andrew Brown Patrick Evans Eric R. Gamazon A. J. Payne Rodrigo Bonazzola Alvaro Barbeira Andrew R. Hamel Ángel Martínez-Pérez José Manuel Soria Brandon L. Pierce Matthew Stephens Eleazar Eskin Emmanouil T. Dermitzakis Ayellet V. Segrè Hae Kyung Im Barbara E. Engelhardt Kristin Ardlie Stephen B. Montgomery Alexis Battle Tuuli Lappalainen Roderic Guigó Barbara E. Stranger François Aguet Shankara Anand Kristin Ardlie Stacey Gabriel Gad Getz Aaron Graubert Kane Hadley Robert E. Handsaker Katherine Huang Seva Kashin Xiao Li Daniel G. MacArthur Samuel R. Meier Jared L. Nedzel Duyen T. Nguyen Ayellet V. Segrè Ellen Todres Brunilda Balliu Alvaro Barbeira Alexis Battle Rodrigo Bonazzola Andrew Brown Christopher D. Brown Stephane E. Castel Donald F. Conrad Daniel J. Cotter Nancy J. Cox Sayantan Das Olivia M. de Goede Emmanouil T. Dermitzakis Jonah Einson Barbara E. Engelhardt Eleazar Eskin Tiffany Eulalio Nicole M. Ferraro Elise D. Flynn Laure Frésard Eric R. Gamazon Diego Garrido-Martín Nicole R. Gay Michael J. Gloudemans Roderic Guigó Andrew R. Hame Yuan He Paul Hoffman Farhad Hormozdiari Lei Hou Hae Kyung Im Brian Jo Silva Kasela Manolis Kellis Sarah Kim-Hellmuth Alan Kwong Tuuli Lappalainen Xin Li Yanyu Liang Serghei Mangul Pejman Mohammadi Stephen B. Montgomery Manuel Muñoz-Aguirre

Many complex human phenotypes exhibit sex-differentiated characteristics. However, the molecular mechanisms underlying these differences remain largely unknown. We generated a catalog of sex in gene expression and genetic regulation across 44 tissue sources surveyed by Genotype-Tissue Expression project (GTEx, v8 release). demonstrate that influences levels cellular composition samples body. A total 37% all genes sex-biased at least one tissue. identify cis quantitative trait loci (eQTLs)...

10.1126/science.aba3066 article EN Science 2020-09-10
Sarah Kim-Hellmuth François Aguet Meritxell Oliva Manuel Muñoz-Aguirre Silva Kasela and 95 more Valentin Wucher Stephane E. Castel Andrew R. Hamel Ana Viñuela Amy L. Roberts Serghei Mangul Xiaoquan Wen Gao Wang Alvaro Barbeira Diego Garrido-Martín Brian B. Nadel Yuxin Zou Rodrigo Bonazzola Jie Quan Andrew Brown Ángel Martínez-Pérez José Manuel Soria Gad Getz Emmanouil T. Dermitzakis Kerrin S. Small Matthew Stephens Hualin Simon Xi Hae Kyung Im Roderic Guigó Ayellet V. Segrè Barbara E. Stranger Kristin Ardlie Tuuli Lappalainen François Aguet Shankara Anand Kristin Ardlie Stacey Gabriel Gad Getz Aaron Graubert Kane Hadley Robert E. Handsaker Katherine Huang Seva Kashin Xiao Li Daniel G. MacArthur Samuel R. Meier Jared L. Nedzel Duyen T. Nguyen Ayellet V. Segrè Ellen Todres Brunilda Balliu Alvaro Barbeira Alexis Battle Rodrigo Bonazzola Andrew Brown Christopher D. Brown Stephane E. Castel Donald F. Conrad Daniel J. Cotter Nancy J. Cox Sayantan Das Olivia M. de Goede Emmanouil T. Dermitzakis Jonah Einson Barbara E. Engelhardt Eleazar Eskin Tiffany Eulalio Nicole M. Ferraro Elise D. Flynn Laure Frésard Eric R. Gamazon Diego Garrido-Martín Nicole R. Gay Michael J. Gloudemans Roderic Guigó Andrew R. Hame Yuan He Paul Hoffman Farhad Hormozdiari Lei Hou Hae Kyung Im Brian Jo Silva Kasela Manolis Kellis Sarah Kim-Hellmuth Alan Kwong Tuuli Lappalainen Xin Li Yanyu Liang Serghei Mangul Pejman Mohammadi Stephen B. Montgomery Manuel Muñoz-Aguirre Daniel Nachun Andrew B. Nobel Meritxell Oliva YoSon Park Yongjin Park Princy Parsana Abhiram Rao

Cell type composition, estimated from bulk tissue, maps the cellular specificity of genetic variants.

10.1126/science.aaz8528 article EN Science 2020-09-10
Kathryn Demanelis Farzana Jasmine Lin Chen Meytal Chernoff Tong Lin and 95 more Dayana Delgado Chenan Zhang Justin Shinkle Mekala Sabarinathan Hannah Lin Eduardo Ramirez Meritxell Oliva Sarah Kim-Hellmuth Barbara E. Stranger Tsung‐Po Lai Abraham Aviv Kristin Ardlie François Aguet Habibul Ahsan Jennifer A. Doherty Muhammad G. Kibriya Brandon L. Pierce François Aguet Shankara Anand Kristin Ardlie Stacey Gabriel Gad Getz Aaron Graubert Kane Hadley Robert E. Handsaker Katherine Huang Seva Kashin Xiao Li Daniel G. MacArthur Samuel R. Meier Jared L. Nedzel Duyen T. Nguyen Ayellet V. Segrè Ellen Todres Brunilda Balliu Alvaro Barbeira Alexis Battle Rodrigo Bonazzola Andrew Brown Christopher Brown Stephane E. Castel Donald F. Conrad Daniel J. Cotter Nancy J. Cox Sayantan Das Olivia M. de Goede Emmanouil T. Dermitzakis Jonah Einson Barbara E. Engelhardt Eleazar Eskin Tiffany Eulalio Nicole M. Ferraro Elise D. Flynn Laure Frésard Eric R. Gamazon Diego Garrido-Martín Nicole R. Gay Michael J. Gloudemans Roderic Guigó Andrew R. Hame Yuan He Paul Hoffman Farhad Hormozdiari Lei Hou Hae Kyung Im Brian Jo Silva Kasela Manolis Kellis Sarah Kim-Hellmuth Alan Kwong Tuuli Lappalainen Xin Li Yanyu Liang Serghei Mangul Pejman Mohammadi Stephen B. Montgomery Manuel Muñoz-Aguirre Daniel Nachun Andrew B. Nobel Meritxell Oliva YoSon Park Yongjin Park Princy Parsana Abhiram Rao Ferrán Reverter John M. Rouhana Chiara Sabatti Ashis Saha Matthew Stephens Barbara E. Stranger Benjamin J. Strober Nicole A. Teran Ana Viñuela Gao Wang Xiaoquan Wen

Telomere length within an individual varies in a correlated manner across most tissues.

10.1126/science.aaz6876 article EN Science 2020-09-10

10.1016/j.cell.2020.08.036 article EN publisher-specific-oa Cell 2020-09-10
Olivia M. de Goede Daniel Nachun Nicole M. Ferraro Michael J. Gloudemans Abhiram Rao and 95 more Craig Smail Tiffany Eulalio François Aguet Bernard Ng Jishu Xu Alvaro Barbeira Stephane E. Castel Sarah Kim-Hellmuth YoSon Park Alexandra J. Scott Benjamin J. Strober Christopher D. Brown Xiaoquan Wen Ira M. Hall Alexis Battle Tuuli Lappalainen Hae Kyung Im Kristin Ardlie Sara Mostafavi Thomas Quertermous Karla Kirkegaard Stephen B. Montgomery Shankara Anand Stacey Gabriel Gad Getz Aaron Graubert Kane Hadley Robert E. Handsaker Katherine Huang Xiao Li Daniel G. MacArthur Samuel R. Meier Jared L. Nedzel Duyen T. Nguyen Ayellet V. Segrè Ellen Todres Brunilda Balliu Rodrigo Bonazzola Andrew Brown Donald F. Conrad Daniel J. Cotter Nancy J. Cox Sayantan Das Emmanouil T. Dermitzakis Jonah Einson Barbara E. Engelhardt Eleazar Eskin Elise D. Flynn Laure Frésard Eric R. Gamazon Diego Garrido-Martín Nicole R. Gay Roderic Guigó Andrew R. Hamel Yuan He Paul Hoffman Farhad Hormozdiari Lei Hou Brian Jo Silva Kasela Seva Kashin Manolis Kellis Alan Kwong Xin Li Yanyu Liang Serghei Mangul Pejman Mohammadi Manuel Muñoz-Aguirre Andrew B. Nobel Meritxell Oliva Yong‐Jin Park Princy Parsana Ferrán Reverter John M. Rouhana Chiara Sabatti Ashis Saha Matthew Stephens Barbara E. Stranger Nicole A. Teran Ana Viñuela Gao Wang Fred A. Wright Valentin Wucher Yuxin Zou Pedro G. Ferreira Gen Li Marta Melé Esti Yeger‐Lotem Debra Bradbury Tanya Krubit Jeffrey A. McLean Liqun Qi Karna Robinson Nancy Roche Anna M. Smith

10.1016/j.cell.2021.03.050 article EN publisher-specific-oa Cell 2021-04-16
Nicole M. Ferraro Benjamin J. Strober Jonah Einson Nathan S. Abell François Aguet and 95 more Alvaro Barbeira Margot Brandt Maja Bućan Stephane E. Castel Joe R. Davis Emily Greenwald Gaelen T. Hess Austin T. Hilliard Rachel L. Kember Bence Kotis YoSon Park Gina M. Peloso Shweta Ramdas Alexandra J. Scott Craig Smail Emily K. Tsang Seyedeh M. Zekavat Marcello Ziosi Aradhana Kristin Ardlie Themistocles L. Assimes Michael C. Bassik Christopher D. Brown Adolfo Correa Ira M. Hall Hae Kyung Im Xin Li Pradeep Natarajan Tuuli Lappalainen Pejman Mohammadi Stephen B. Montgomery Alexis Battle François Aguet Shankara Anand Kristin Ardlie Stacey Gabriel Gad Getz Aaron Graubert Kane Hadley Robert E. Handsaker Katherine Huang Seva Kashin Xiao Li Daniel G. MacArthur Samuel R. Meier Jared L. Nedzel Duyen T. Nguyen Ayellet V. Segrè Ellen Todres Brunilda Balliu Alvaro Barbeira Alexis Battle Rodrigo Bonazzola Andrew Brown Christopher D. Brown Stephane E. Castel Donald F. Conrad Daniel J. Cotter Nancy J. Cox Sayantan Das Olivia M. de Goede Emmanouil T. Dermitzakis Jonah Einson Barbara E. Engelhardt Eleazar Eskin Tiffany Eulalio Nicole M. Ferraro Elise D. Flynn Laure Frésard Eric R. Gamazon Diego Garrido-Martín Nicole R. Gay Michael J. Gloudemans Roderic Guigó Andrew R. Hame Yuan He Paul Hoffman Farhad Hormozdiari Lei Hou Hae Kyung Im Brian Jo Silva Kasela Manolis Kellis Sarah Kim-Hellmuth Alan Kwong Tuuli Lappalainen Xin Li Yanyu Liang Serghei Mangul Pejman Mohammadi Stephen B. Montgomery Manuel Muñoz-Aguirre Daniel Nachun Andrew B. Nobel Meritxell Oliva

Outliers in the human transcriptome reveal functional effects of rare genetic variants.

10.1126/science.aaz5900 article EN Science 2020-09-10
Stephane E. Castel François Aguet Pejman Mohammadi François Aguet Shankara Anand and 95 more Kristin Ardlie Stacey Gabriel Gad Getz Aaron Graubert Kane Hadley Robert E. Handsaker Katherine Huang Seva Kashin Xiao Li Daniel G. MacArthur Samuel R. Meier Jared L. Nedzel Duyen T. Nguyen Ayellet V. Segrè Ellen Todres François Aguet Shankara Anand Kristin Ardlie Brunilda Balliu Alvaro Barbeira Alexis Battle Rodrigo Bonazzola Andrew Brown Christopher D. Brown Stephane E. Castel Donald F. Conrad Daniel J. Cotter Nancy J. Cox Sayantan Das Olivia M. de Goede Emmanouil T. Dermitzakis Jonah Einson Barbara E. Engelhardt Eleazar Eskin Tiffany Eulalio Nicole M. Ferraro Elise D. Flynn Laure Frésard Eric R. Gamazon Diego Garrido-Martín Nicole R. Gay Gad Getz Michael J. Gloudemans Aaron Graubert Roderic Guigó Kane Hadley Andrew R. Hame Robert E. Handsaker Yuan He Paul Hoffman Farhad Hormozdiari Lei Hou Katherine Huang Hae Kyung Im Brian Jo Silva Kasela Seva Kashin Manolis Kellis Sarah Kim-Hellmuth Alan Kwong Tuuli Lappalainen Xiao Li Xin Li Yanyu Liang Daniel G. MacArthur Serghei Mangul Samuel R. Meier Pejman Mohammadi Stephen B. Montgomery Manuel Muñoz-Aguirre Daniel Nachun Jared L. Nedzel Duyen T. Nguyen Andrew B. Nobel Meritxell Oliva Yo Son Park Yong‐Jin Park Princy Parsana Abhiram Rao Ferrán Reverter John M. Rouhana Chiara Sabatti Ashis Saha Ayellet V. Segrè Andrew D. Skol Matthew Stephens Barbara E. Stranger Benjamin J. Strober Nicole A. Teran Ellen Todres Ana Viñuela Gao Wang Xiaoquan Wen Fred A. Wright Valentin Wucher

Abstract Allele expression (AE) analysis robustly measures cis -regulatory effects. Here, we present and demonstrate the utility of a vast AE resource generated from GTEx v8 release, containing 15,253 samples spanning 54 human tissues for total 431 million measurements at SNP level 153 haplotype level. In addition, develop an extension our tool phASER that allows effect sizes variants to be estimated using haplotype-level data. This is largest date, are able make data publicly available. We...

10.1186/s13059-020-02122-z article EN cc-by Genome biology 2020-09-10

Abstract Alzheimer’s disease (AD) is the most common cause of dementia with advancing age as its strongest risk factor. AD neuropathologic change (ADNC) known to be associated numerous DNA methylation changes in human brain, but oldest old (> 90 years) have so far been underrepresented epigenetic studies ADNC. Our study participants were individuals aged over years (n = 47) from The + Study . We analyzed bulk samples eight precisely dissected regions brain: middle frontal gyrus, cingulate...

10.1186/s40478-022-01470-0 article EN cc-by Acta Neuropathologica Communications 2022-11-29

0. Abstract Background The integration of large language models (LLMs) in healthcare offers immense opportunity to streamline tasks, but also carries risks such as response accuracy and bias perpetration. To address this, we conducted a red-teaming exercise assess LLMs developed dataset clinically relevant scenarios for future teams use. Methods We convened 80 multi-disciplinary experts evaluate the performance popular across multiple medical scenarios. Teams composed clinicians, engineering...

10.1101/2024.04.05.24305411 preprint EN cc-by-nc-nd medRxiv (Cold Spring Harbor Laboratory) 2024-04-07

We have developed the regionalpcs method, an approach for summarizing gene-level methylation. addresses challenge of deciphering complex epigenetic mechanisms in diseases like Alzheimer's disease. In contrast to averaging, uses principal components analysis capture methylation patterns across gene regions. Our method demonstrates a 54% improvement sensitivity over averaging simulations, providing robust framework identifying subtle variations. Applying disease brain data, combined with cell...

10.1038/s41467-024-55698-6 article EN cc-by-nc-nd Nature Communications 2025-01-03

Red teaming, the practice of adversarially exposing unexpected or undesired model behaviors, is critical towards improving equity and accuracy large language models, but non-model creator-affiliated red teaming scant in healthcare. We convened teams clinicians, medical engineering students, technical professionals (80 participants total) to stress-test models with real-world clinical cases categorize inappropriate responses along axes safety, privacy, hallucinations/accuracy, bias. Six...

10.1038/s41746-025-01542-0 article EN cc-by npj Digital Medicine 2025-03-07

Abstract Objective To develop prediction models for intensive care unit (ICU) vs non-ICU level-of-care need within 24 hours of inpatient admission emergency department (ED) patients using electronic health record data. Materials and Methods Using records 41 654 ED visits to a tertiary academic center from 2015 2019, we tested 4 algorithms—feed-forward neural networks, regularized regression, random forests, gradient-boosted trees—to predict ICU at the 24th hour following admission....

10.1093/jamia/ocab118 article EN cc-by-nc Journal of the American Medical Informatics Association 2021-05-27

We have developed the regional principal components (rPCs) method, a novel approach for summarizing gene-level methylation. rPCs address challenge of deciphering complex epigenetic mechanisms in diseases like Alzheimer’s disease (AD). In contrast to traditional averaging, leverage analysis capture methylation patterns across gene regions. Our method demonstrated 54% improvement sensitivity over averaging simulations, offering robust framework identifying subtle variations. Applying AD brain...

10.1101/2024.05.01.590171 preprint EN cc-by-nc bioRxiv (Cold Spring Harbor Laboratory) 2024-05-01

A gap remains between developing risk prediction models and deploying to support real-world decision making, especially in high-stakes situations. Human-experts' reasoning abilities remain critical identifying potential improvements ensuring safety. We propose a thick data analytics (TDA) framework for eliciting combining expert-human insight into the evaluation of models. The is 3-fold: (a) statistical methods are limited using joint distributions observable quantities predictions but often...

10.1080/00031305.2024.2327535 article EN The American Statistician 2024-03-11

Abstract Precise interpretation of the effects protein-truncating variants (PTVs) is important for accurate determination variant impact. Current methods assessing ability PTVs to induce nonsense-mediated decay (NMD) focus primarily on position in transcript. We used RNA-sequencing Genotype Tissue Expression v8 cohort compute efficiency NMD using allelic imbalance 2,320 rare (genome aggregation database minor allele frequency <=1%) across 809 individuals 49 tissues. created an...

10.1101/2021.02.03.429654 preprint EN cc-by-nc bioRxiv (Cold Spring Harbor Laboratory) 2021-02-03
Coming Soon ...