Yoshiki Vázquez‐Baeza

ORCID: 0000-0001-6014-2009
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Gut microbiota and health
  • Metabolomics and Mass Spectrometry Studies
  • Microbial Community Ecology and Physiology
  • Genomics and Phylogenetic Studies
  • Nutritional Studies and Diet
  • Clostridium difficile and Clostridium perfringens research
  • Diet and metabolism studies
  • Inflammatory Bowel Disease
  • Bioinformatics and Genomic Networks
  • Food Security and Health in Diverse Populations
  • Nutrition, Genetics, and Disease
  • Epigenetics and DNA Methylation
  • Scientific Computing and Data Management
  • Probiotics and Fermented Foods
  • Liver Disease Diagnosis and Treatment
  • Helicobacter pylori-related gastroenterology studies
  • Gene expression and cancer classification
  • Cystic Fibrosis Research Advances
  • Genetics, Bioinformatics, and Biomedical Research
  • Meta-analysis and systematic reviews
  • Microscopic Colitis
  • Advanced Graph Neural Networks
  • Dermatology and Skin Diseases
  • Mycobacterium research and diagnosis
  • Advanced Numerical Analysis Techniques

Jacobs (United States)
2019-2025

University of California, San Diego
2016-2025

University of California, San Francisco
2022

La Jolla Bioengineering Institute
2020

University of Colorado Boulder
2013-2015

Data from 16S ribosomal RNA (rRNA) amplicon sequencing present challenges to ecological and statistical interpretation. In particular, library sizes often vary over several ranges of magnitude, the data contains many zeros. Although we are typically interested in comparing relative abundance taxa ecosystem two or more groups, can only measure taxon specimens obtained ecosystems. Because comparison specimen is not equivalent ecosystems, this presents a special challenge. Second, because (as...

10.1186/s40168-017-0237-y article EN cc-by Microbiome 2017-03-03

Abstract Background As microbial ecologists take advantage of high-throughput sequencing technologies to describe communities across ever-increasing numbers samples, new analysis tools are required relate the distribution microbes among larger communities, and use increasingly rich standards-compliant metadata understand biological factors driving these relationships. In particular, Earth Microbiome Project drives needs by profiling genomic content tens thousands samples multiple environment...

10.1186/2047-217x-2-16 article EN cc-by GigaScience 2013-11-26

The bacteria that colonize humans and our built environments have the potential to influence health. Microbial communities associated with seven families their homes over 6 weeks were assessed, including three moved home. differed substantially among homes, home microbiome was largely sourced from humans. microbiota in each identifiable by family. Network analysis identified as primary bacterial vector, a Bayesian method significantly matched individuals dwellings. Draft genomes of human...

10.1126/science.1254529 article EN Science 2014-08-28
Daniel McDonald Embriette R. Hyde Justine W. Debelius James T. Morton Antonio González-Torres and 95 more Gail Ackermann Alexander A. Aksenov Bahar Behsaz Caitriona Brennan Yingfeng Chen Lindsay DeRight Goldasich Pieter C. Dorrestein Robert R. Dunn Ashkaan K. Fahimipour James Gaffney Jack A. Gilbert Grant Gogul Jessica L. Green Philip Hugenholtz Greg Humphrey Curtis Huttenhower Matthew Jackson Stefan Janssen Dilip V. Jeste Lingjing Jiang Scott T. Kelley Dan Knights Tomasz Kościółek Joshua Ladau Jeff D. Leach Clarisse Marotz Dmitry Meleshko Alexey V. Melnik Jessica L. Metcalf Hosein Mohimani Emmanuel Montassier José A. Navas-Molina Tanya T. Nguyen Shyamal D. Peddada Pavel A. Pevzner Katherine S. Pollard Ali Rahnavard Adam Robbins‐Pianka Naseer Sangwan Joshua Shorenstein Larry Smarr Se Jin Song Timothy Spector Austin D. Swafford Varykina G. Thackray Luke Thompson Anupriya Tripathi Yoshiki Vázquez‐Baeza Alison Vrbanac Paul E. Wischmeyer Elaine Wolfe Qiyun Zhu Rob Knight Allison E. Mann Amnon Amir Angel Frazier Cameron Martino Carlito B. Lebrilla Catherine Lozupone Cecil M. Lewis Charles L. Raison Chi Zhang Christian L. Lauber Christina Warinner Christopher A. Lowry Chris Callewaert Cinnamon S. Bloss Dana Willner Daniela Domingos Galzerani David J. Gonzalez David A. Mills Deepak Chopra Dirk Gevers Donna Berg-Lyons Dorothy D. Sears Doug Wendel Elijah Lovelace Emily C. Pierce Emily TerAvest Evan Bolyen Frederic D. Bushman Gary D. Wu George M. Church Gordon Saxe Hanna D. Holscher Ivo Ugrina J German J. Gregory Caporaso Jacob M. Wozniak Jacqueline Kerr Jacques Ravel James D. Lewis Jan S. Suchodolski Janet Jansson Jarrad Hampton‐Marcell

Although much work has linked the human microbiome to specific phenotypes and lifestyle variables, data from different projects have been challenging integrate extent of microbial molecular diversity in stool remains unknown. Using standardized protocols Earth Microbiome Project sample contributions over 10,000 citizen-scientists, together with an open research network, we compare specimens primarily United States, Kingdom, Australia one another environmental samples. Our results show...

10.1128/msystems.00031-18 article EN cc-by mSystems 2018-05-14
Evan Bolyen Jai Ram Rideout Matthew R. Dillon Nicholas A. Bokulich Christian C. Abnet and 95 more Gabriel A. Al‐Ghalith Harriet Alexander Eric J. Alm Manimozhiyan Arumugam Francesco Asnicar Yang Bai Jordan E. Bisanz Kyle Bittinger Asker Brejnrod Colin Brislawn C. Titus Brown Benjamin J. Callahan Andrés Mauricio Caraballo‐Rodríguez John Chase Emily K. Cope Ricardo J.N. Bettencourt da Silva Pieter C. Dorrestein Gavin M. Douglas Daniel M. Durall Claire Duvallet Christian F. Edwardson Madeleine Ernst Mehrbod Estaki Jennifer Fouquier Julia M. Gauglitz Deanna L. Gibson Antonio González Kestrel Gorlick Jiarong Guo Benjamin Hillmann Susan Holmes Hannes Holste Curtis Huttenhower Gavin Huttley Stefan Janssen Alan K. Jarmusch Lingjing Jiang Benjamin D. Kaehler Kyo Bin Kang Christopher R. Keefe Paul Keim Scott T. Kelley Dan Knights Irina Koester Tomasz Kościółek Jorden Kreps Morgan G. I. Langille Joslynn S. Lee Ruth E. Ley Yongxin Liu Erikka Loftfield Catherine Lozupone Massoud Maher Clarisse Marotz Bryan D Martin Daniel McDonald Lauren J. McIver Alexey V. Melnik Jessica L. Metcalf Sydney Morgan Jamie Morton Ahmad Turan Naimey José A. Navas-Molina Louis‐Félix Nothias Stephanie B. Orchanian Talima Pearson Samuel L Peoples Daniel Petras Mary L. Preuss Elmar Pruesse Lasse Buur Rasmussen Adam R. Rivers Michael S. Robeson Patrick Rosenthal Nicola Segata Michael Shaffer Arron Shiffer Rashmi Sinha Se Jin Song John R. Spear Austin D. Swafford Luke Thompson Pedro J. Torres Pauline Trinh Anupriya Tripathi Peter J. Turnbaugh Sabah Ul-Hasan Justin J. J. van der Hooft Fernando Vargas Yoshiki Vázquez‐Baeza Emily Vogtmann Max von Hippel William A. Walters Yunhu Wan Mingxun Wang

We present QIIME 2, an open-source microbiome data science platform accessible to users spanning the research ecosystem, from scientists and engineers clinicians policy makers. 2 provides new features that will drive next generation of research. These include interactive spatial temporal analysis visualization tools, support for metabolomics shotgun metagenomics analysis, automated provenance tracking ensure reproducible, transparent science.

10.7287/peerj.preprints.27295v1 article EN 2018-10-24
Evan Bolyen Jai Ram Rideout Matthew R. Dillon Nicholas A. Bokulich Christian C. Abnet and 95 more Gabriel A. Al‐Ghalith Harriet Alexander Eric J. Alm Manimozhiyan Arumugam Francesco Asnicar Yang Bai Jordan E. Bisanz Kyle Bittinger Asker Brejnrod Colin Brislawn C. Titus Brown Benjamin J. Callahan Andrés Mauricio Caraballo‐Rodríguez John Chase Emily K. Cope Ricardo J.N. Bettencourt da Silva Pieter C. Dorrestein Gavin M. Douglas Daniel M. Durall Claire Duvallet Christian F. Edwardson Madeleine Ernst Mehrbod Estaki Jennifer Fouquier Julia M. Gauglitz Deanna L. Gibson Antonio González Kestrel Gorlick Jiarong Guo Benjamin Hillmann Susan Holmes Hannes Holste Curtis Huttenhower Gavin Huttley Stefan Janssen Alan K. Jarmusch Lingjing Jiang Benjamin D. Kaehler Kyo Bin Kang Christopher R. Keefe Paul Keim Scott T. Kelley Dan Knights Irina Koester Tomasz Kościółek Jorden Kreps Morgan G. I. Langille Joslynn S. Lee Ruth E. Ley Yongxin Liu Erikka Loftfield Catherine Lozupone Massoud Maher Clarisse Marotz Bryan D Martin Daniel McDonald Lauren J. McIver Alexey V. Melnik Jessica L. Metcalf Sydney Morgan Jamie Morton Ahmad Turan Naimey José A. Navas-Molina Louis‐Félix Nothias Stephanie B. Orchanian Talima Pearson Samuel L Peoples Daniel Petras Mary L. Preuss Elmar Pruesse Lasse Buur Rasmussen Adam R. Rivers Michael S. Robeson Patrick Rosenthal Nicola Segata Michael Shaffer Arron Shiffer Rashmi Sinha Se Jin Song John R. Spear Austin D. Swafford Luke Thompson Pedro J. Torres Pauline Trinh Anupriya Tripathi Peter J. Turnbaugh Sabah Ul-Hasan Justin J. J. van der Hooft Fernando Vargas Yoshiki Vázquez‐Baeza Emily Vogtmann Max von Hippel William A. Walters Yunhu Wan Mingxun Wang

We present QIIME 2, an open-source microbiome data science platform accessible to users spanning the research ecosystem, from scientists and engineers clinicians policy makers. 2 provides new features that will drive next generation of research. These include interactive spatial temporal analysis visualization tools, support for metabolomics shotgun metagenomics analysis, automated provenance tracking ensure reproducible, transparent science.

10.7287/peerj.preprints.27295v2 preprint EN 2018-12-03

Abstract Background It is now apparent that the complex microbial communities found on and in human body vary across individuals. What has largely been missing from previous studies an understanding of how these over time within To extent to which it considered, often assumed temporal variability negligible for healthy adults. Here we address this gap by profiling forehead, gut (fecal), palm, tongue 85 adults, weekly 3 months. Results We skin (forehead palm) varied most number taxa present,...

10.1186/s13059-014-0531-y article EN cc-by Genome biology 2014-12-01

QIIME 2 is a completely re-engineered microbiome bioinformatics platform based on the popular platform, which it has replaced. facilitates comprehensive and fully reproducible data science, improving accessibility to diverse users by adding multiple user interfaces. can be combined with Qiita, an open-source web-based re-use available for meta-analysis. The following basic protocol describes how install single computer analyze sequence data, from processing of raw DNA reads through...

10.1002/cpbi.100 article EN cc-by Current Protocols in Bioinformatics 2020-04-28

Advances in sequencing technologies have enabled novel insights into microbial niche differentiation, from analyzing environmental samples to understanding human diseases and informing dietary studies. However, identifying the taxa that differentiate these can be challenging. These issues stem compositional nature of 16S rRNA gene data (or, more generally, taxon or functional data); changes relative abundance one influence apparent abundances others. Here we acknowledge inferring properties...

10.1128/msystems.00162-16 article EN cc-by mSystems 2017-01-18

Fecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridium difficile infection (CDI) that often fails standard antibiotic therapy. Despite its widespread recent use, however, little known about the stability of fecal following FMT.Here we report on short- and long-term changes provide kinetic visualization composition in patients with multiply CDI were refractory to therapy treated using FMT. samples collected from four before up 151 days after FMT, daily...

10.1186/s40168-015-0070-0 article EN cc-by Microbiome 2015-03-17
Coming Soon ...