Minta Thomas

ORCID: 0000-0001-9337-7015
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Genetic factors in colorectal cancer
  • Colorectal Cancer Screening and Detection
  • Genetic Associations and Epidemiology
  • BRCA gene mutations in cancer
  • Gastric Cancer Management and Outcomes
  • Machine Learning in Bioinformatics
  • Gene expression and cancer classification
  • Genomics and Rare Diseases
  • Lipoproteins and Cardiovascular Health
  • Colorectal Cancer Treatments and Studies
  • Molecular Biology Techniques and Applications
  • Cancer, Lipids, and Metabolism
  • RNA modifications and cancer
  • Cancer Genomics and Diagnostics
  • Lipid metabolism and disorders
  • Face and Expression Recognition
  • Nutritional Studies and Diet
  • Genetics, Bioinformatics, and Biomedical Research
  • Cryptographic Implementations and Security
  • Chaos-based Image/Signal Encryption
  • Advanced Malware Detection Techniques
  • Nutrition, Genetics, and Disease
  • Bioinformatics and Genomic Networks
  • Genomics and Chromatin Dynamics
  • Global Cancer Incidence and Screening

Fred Hutch Cancer Center
2019-2024

Cape Town HVTN Immunology Laboratory / Hutchinson Centre Research Institute of South Africa
2023

Cancer Research Center
2023

iMinds
2014

KU Leuven
2014

Minta Thomas Lori C. Sakoda Michael Hoffmeister Elisabeth A. Rosenthal Jeffrey K. Lee and 92 more Fränzel J.B. van Duijnhoven Elizabeth A. Platz Anna H. Wu Christopher H. Dampier Albert de la Chapelle Alicja Wolk Amit D. Joshi Andrea N. Burnett‐Hartman Andrea Gsur Annika Lindblom Antoni Castells Aung Ko Win Bahram Namjou Bethany Van Guelpen Catherine M. Tangen Qianchuan He Christopher I. Li Clemens Schafmayer Corinne E. Joshu Cornelia M. Ulrich D. Timothy Bishop Daniel D. Buchanan Daniel J. Schaid David A. Drew David C. Muller David Duggan David R. Crosslin Demetrius Albanes Edward L. Giovannucci Eric B. Larson Flora Qu Frank Mentch Graham G. Giles Hákon Hákonarson Heather Hampel Ian B. Stanaway Jane C. Figueiredo Jeroen R. Huyghe Jessica Minnier Jenny Chang‐Claude Jochen Hampe John B. Harley Kala Visvanathan Keith R. Curtis Kenneth Offit Li Li Loı̈c Le Marchand Ludmila Vodičková Marc J. Gunter Mark A. Jenkins Martha L. Slattery Mathieu Lemire Michael O. Woods Mingyang Song Neil Murphy Noralane M. Lindor Ozan Dikilitas Paul D.P. Pharoah Peter T. Campbell Polly A. Newcomb Roger L. Milne Robert J. MacInnis Sergi Castellví–Bel Shuji Ogino Sonja I. Berndt Stéphane Bézieau Stephen N. Thibodeau Steven Gallinger Syed Hassan Ejaz Zaidi Tabitha A. Harrison Temitope O. Keku Thomas J. Hudson Veronika Vymetálková Vı́ctor Moreno Vicente Martín Volker Arndt Wei‐Qi Wei Wendy K. Chung Yu‐Ru Su Richard B. Hayes Emily White Pavel Vodička Graham Casey Stephen B. Gruber Robert E. Schoen Andrew T. Chan John D. Potter Hermann Brenner Gail P. Jarvik Douglas A. Corley Ulrike Peters Li Hsu

10.1016/j.ajhg.2020.07.006 article EN publisher-specific-oa The American Journal of Human Genetics 2020-08-05

Polygenic risk scores (PRSs) have improved in predictive performance, but several challenges remain to be addressed before PRSs can implemented the clinic, including reduced performance of diverse populations, and interpretation communication genetic results both providers patients. To address these challenges, National Human Genome Research Institute-funded Electronic Medical Records Genomics (eMERGE) Network has developed a framework pipeline for return PRS-based genome-informed assessment...

10.1038/s41591-024-02796-z article EN cc-by Nature Medicine 2024-02-01
Alexi Archambault Yu‐Ru Su Jihyoun Jeon Minta Thomas Yi Lin and 95 more David V. Conti Aung Ko Win Lori C. Sakoda Iris Lansdorp‐Vogelaar Elisabeth F. P. Peterse Ann G. Zauber David Duggan Andreana N. Holowatyj Jeroen R. Huyghe Hermann Brenner Michelle Cotterchio Stéphane Bézieau Stephanie L. Schmit Christopher K. Edlund Melissa C. Southey Robert J. MacInnis Peter T. Campbell Jenny Chang‐Claude Martha L. Slattery Andrew T. Chan Amit D. Joshi Mingyang Song Yin Cao Michael O. Woods Emily White Stephanie J. Weinstein Cornelia M. Ulrich Michael Hoffmeister Stephanie A. Bien Tabitha A. Harrison Jochen Hampe Christopher I. Li Clemens Schafmayer Kenneth Offit Paul D.P. Pharoah Vı́ctor Moreno Annika Lindblom Alicja Wolk Anna H. Wu Li Li Marc J. Gunter Andrea Gsur Temitope O. Keku Rachel Pearlman D. Timothy Bishop Sergi Castellví–Bel Leticia Moreira Pavel Vodička Ellen Kampman Graham G. Giles Demetrius Albanes John A. Baron Sonja I. Berndt Stefanie Brezina Stephan Buch Daniel D. Buchanan Antonia Trichopoulou Gianluca Severi María‐Dolores Chirlaque María‐José Sánchez Domenico Palli Tilman Kühn Neil Murphy Amanda J. Cross Andrea N. Burnett‐Hartman Stephen J. Chanock Albert de la Chapelle Douglas F. Easton Faye Elliott Dallas R. English Edith J. M. Feskens Liesel M. FitzGerald Phyllis J. Goodman John L. Hopper Thomas J. Hudson David J. Hunter Eric J. Jacobs Corinne E. Joshu Sébastien Küry Sanford D. Markowitz Roger L. Milne Elizabeth A. Platz Gad Rennert Hedy S. Rennert Fredrick R. Schumacher Robert S. Sandler Daniela Seminara Catherine M. Tangen Stephen N. Thibodeau Amanda E. Toland Fränzel J.B. van Duijnhoven Kala Visvanathan Ludmila Vodičková John D. Potter Satu Männistö

10.1053/j.gastro.2019.12.012 article EN Gastroenterology 2019-12-19

The incidence of colorectal cancer (CRC) among individuals aged younger than 50 years has been increasing. As screening guidelines lower the recommended age initiation, concerns including burden on capacity and costs have recognized, suggesting that an individualized approach may be warranted. We developed risk prediction models for early-onset CRC incorporate environmental score (ERS), 16 lifestyle factors, a polygenic (PRS) 141 variants.

10.1093/jnci/djac003 article EN JNCI Journal of the National Cancer Institute 2022-01-11
Zhishan Chen Xingyi Guo Ran Tao Jeroen R. Huyghe Philip Law and 95 more Ceres Fernández‐Rozadilla Jie Ping Guochong Jia Jirong Long Chao Li Quanhu Shen Yuhan Xie Maria Timofeeva Minta Thomas Stephanie L. Schmit Virginia Díez‐Obrero Matthew A.M. Devall Ferrán Moratalla-Navarro Juan Fernández‐Tajes Claire Palles Kitty Sherwood Sarah Briggs Victoria Svinti Kevin Donnelly Susan M. Farrington James P. Blackmur P G Vaughan-Shaw Xiao‐Ou Shu Yingchang Lu Peter Broderick James B. Studd Tabitha A. Harrison David V. Conti Fredrick R. Schumacher Marilena Melas Gad Rennert Mireia Obón‐Santacana Vicente Martín Jae Hwan Oh Jeongseon Kim Sun Ha Jee Keum Ji Jung Sun-Seog Kweon Min‐Ho Shin Aesun Shin Yoon‐Ok Ahn Dong-Hyun Kim Isao Oze Wanqing Wen Keitaro Matsuo Koichi Matsuda Chizu Tanikawa Zefang Ren Yu‐Tang Gao Wei‐Hua Jia John L. Hopper Mark A. Jenkins Aung Ko Win Rish K. Pai Jane C. Figueiredo Robert W. Haile Steven Gallinger Michael O. Woods Polly A. Newcomb David Duggan Jeremy P. Cheadle Richard Kaplan Rachel Kerr David Kerr Iva Kirac Jan Böhm Jukka‐Pekka Mecklin Pekka Jousilahti Paul Knekt Lauri A. Aaltonen Harri Rissanen ­Eero Pukkala Johan G. Eriksson Tatiana Cajuso Ulrika A. Hänninen Johanna Kondelin Kimmo Palin Tomas Tanskanen Laura Renkonen‐Sinisalo Satu Männistö Demetrius Albanes Stephanie J. Weinstein Edward A. Ruiz‐Narváez Julie R. Palmer Daniel D. Buchanan Elizabeth A. Platz Kala Visvanathan Cornelia M. Ulrich Erin M. Siegel Stefanie Brezina Andrea Gsur Peter T. Campbell Jenny Chang‐Claude Michael Hoffmeister Hermann Brenner

Abstract Genome-wide association studies (GWAS) have identified more than 200 common genetic variants independently associated with colorectal cancer (CRC) risk, but the causal and target genes are mostly unknown. We sought to fine-map all known CRC risk loci using GWAS data from 100,204 cases 154,587 controls of East Asian European ancestry. Our stepwise conditional analyses revealed 238 independent signals each a set credible (CCVs), which 28 had single CCV. cis-eQTL/mQTL colocalization...

10.1038/s41467-024-47399-x article EN cc-by Nature Communications 2024-04-26
Minta Thomas Yu‐Ru Su Elisabeth A. Rosenthal Lori C. Sakoda Stephanie L. Schmit and 95 more Maria Timofeeva Zhishan Chen Ceres Fernández‐Rozadilla Philip Law Neil Murphy Robert Carreras‐Torres Virginia Díez‐Obrero Fränzel J.B. van Duijnhoven Shangqing Jiang Aesun Shin Alicja Wolk Amanda I. Phipps Andrea N. Burnett‐Hartman Andrea Gsur Andrew T. Chan Ann G. Zauber Anna H. Wu Annika Lindblom Caroline Y. Um Catherine M. Tangen Chris Gignoux Christina C. Newton Christopher A. Haiman Conghui Qu D. Timothy Bishop Daniel D. Buchanan David R. Crosslin David V. Conti Dong-Hyun Kim Elizabeth R. Hauser Emily White Erin M. Siegel Fredrick R. Schumacher Gad Rennert Graham G. Giles Heather Hampel Hermann Brenner Isao Oze Jae Hwan Oh Jeffrey K. Lee Jennifer L. Schneider Jenny Chang‐Claude Jeongseon Kim Jeroen R. Huyghe Jiayin Zheng Jochen Hampe Joel K. Greenson John L. Hopper Julie R. Palmer Kala Visvanathan Keitaro Matsuo Koichi Matsuda Keum Ji Jung Li Li Loı̈c Le Marchand Ludmila Vodičková Luís Bujanda Marc J. Gunter Marco Matejcic Mark A. Jenkins Martha L. Slattery Mauro DʼAmato Meilin Wang Michael Hoffmeister Michael O. Woods Michelle Kim Mingyang Song Motoki Iwasaki Mulong Du Natalia Udaltsova Norie Sawada Pavel Vodička Peter T. Campbell Polly A. Newcomb Qiuyin Cai Rachel Pearlman Rish K. Pai Robert E. Schoen Robert S. Steinfelder Robert W. Haile Rosita Vandenputtelaar Ross L. Prentice Sébastien Küry Sergi Castellví–Bel Shoichiro Tsugane Sonja I. Berndt Soo Chin Lee Stefanie Brezina Stephanie J. Weinstein Stephen J. Chanock Sun Ha Jee Sun‐Seog Kweon Susan T. Vadaparampil Tabitha A. Harrison Taiki Yamaji

Abstract Polygenic risk scores (PRS) have great potential to guide precision colorectal cancer (CRC) prevention by identifying those at higher undertake targeted screening. However, current PRS using European ancestry data sub-optimal performance in non-European populations, limiting their utility among these populations. Towards addressing this deficiency, we expand development for CRC incorporating Asian (21,731 cases; 47,444 controls) into training datasets (78,473 107,143 controls). The...

10.1038/s41467-023-41819-0 article EN cc-by Nature Communications 2023-10-02

Previous studies on the cost-effectiveness of personalized colorectal cancer (CRC) screening were based hypothetical performance CRC risk prediction and did not consider association with competing causes death. In this study, we estimated risk-stratified using real-world data for

10.1016/j.cgh.2023.03.003 article EN cc-by-nc-nd Clinical Gastroenterology and Hepatology 2023-03-09

Polygenic risk scores (PRS) have improved in predictive performance supporting their use clinical practice. Reduced of PRS diverse populations can exacerbate existing health disparities. The NHGRI-funded eMERGE Network is returning a PRS-based genome-informed assessment to 25,000 adults and children. We assessed performance, medical actionability, potential utility for 23 conditions. Standardized metrics were considered the selection process with additional consideration given strength...

10.1101/2023.05.25.23290535 preprint EN cc-by-nc-nd medRxiv (Cold Spring Harbor Laboratory) 2023-06-05

Abstract Background Transcriptome-wide association studies have been successful in identifying candidate susceptibility genes for colorectal cancer (CRC). To strengthen gene discovery, we conducted a large transcriptome-wide study and an alternative splicing CRC using improved genetic prediction models performed in-depth functional investigations. Methods We analyzed RNA-sequencing data from normal colon tissues genotype 423 European descendants to build of expression evaluated model...

10.1093/jnci/djad178 article EN JNCI Journal of the National Cancer Institute 2023-08-25

DNA microarrays are potentially powerful technology for improving diagnostic classification, treatment selection, and prognostic assessment. The use of this to predict cancer outcome has a history almost decade. Disease class predictors can be designed known disease cases provide confirmation or clarify abnormal cases. main input high dimensional data with many variables few observations. Dimensionality reduction these features set significantly speeds up the prediction task. Feature...

10.1186/1471-2105-15-137 article EN cc-by BMC Bioinformatics 2014-05-10

Short Message Service (SMS) is a process of transmission short messages over the network. SMS used in daily life applications including mobile commerce, banking, and so on. It robust communication channel to transmit information. pursue store forward way transmitting messages. The private information like passwords, account number, passport license number are also send through message. traditional messaging service does not provide security message since contained transmits as plain text...

10.1109/iccpct.2015.7159471 article EN 2015-03-01

Clinical data, such as patient history, laboratory analysis, ultrasound parameters-which are the basis of day-to-day clinical decision support-are often used to guide management cancer in presence microarray data. Several data fusion techniques available integrate genomics or proteomics but only a few studies have created single prediction model using both gene expression and These remain inconclusive regarding an obtained improvement performance. To improve management, these should be fully...

10.1186/s12859-014-0411-1 article EN cc-by BMC Bioinformatics 2014-12-01

An important subset of colorectal cancer (CRC) is caused by rare pathogenic variants in more than 20 high-risk genes,1Huyghe J.R. Bien S.A. Harrison T.A. et al.Nat Genet. 2019; 51: 76-87Crossref PubMed Scopus (265) Google Scholar, 2Seifert B.A. McGlaughon J.L. Jackson al.Genet Med. 21: 1507-1516Abstract Full Text PDF (14) 3Belhadj S. Terradas M. Munoz-Torres P.M. al.Hum Mutat. 2020; 41: 1563-1576Crossref (23) Scholar The National Comprehensive Cancer Network clinical practice guidelines...

10.1053/j.gastro.2023.06.032 article EN cc-by Gastroenterology 2023-07-14

United States Multi-Society Task Force colonoscopy surveillance intervals are based solely on adenoma characteristics, without accounting for other risk factors. We investigated whether a model including demographic, environmental, and genetic factors could individualize under an "equal management of equal risks" framework.

10.14309/ctg.0000000000000782 article EN cc-by-nc-nd Clinical and Translational Gastroenterology 2024-11-13

Abstract Background Whether blood lipids are causally associated with colorectal cancer (CRC) risk remains unclear. Methods Using two-sample Mendelian randomisation (MR), our study examined the associations of genetically-predicted concentrations and lipoproteins (primary: LDL-C, HDL-C, triglycerides, total cholesterol), genetically-proxied inhibition HMGCR, NPC1L1, PCSK9 (which mimic therapeutic effects LDL-lowering drugs), risks CRC its subsites. Genetic were obtained from Global Lipids...

10.1038/s41416-024-02900-7 article EN cc-by British Journal of Cancer 2024-11-23

ABSTRACT Colorectal cancer (CRC) is a complex disease with monogenic, polygenic and environmental risk factors. Polygenic scores (PRSs) aim to identify high individuals. Due differences in genetic background, PRS distributions vary by ancestry, necessitating standardization. We compared four post‐hoc methods using the All of Us Research Program Whole Genome Sequence data for transancestry CRC PRS. contrasted results from linear models trained on A. entire or an ancestrally diverse subset AND...

10.1002/gepi.22590 article EN Genetic Epidemiology 2024-09-24
Zhishan Chen Xingyi Guo Ran Tao Jeroen R. Huyghe Philip Law and 95 more Ceres Fernández‐Rozadilla Jie Ping Guochong Jia Jirong Long Chao Li Quanhu Shen Yuhan Xie Maria Timofeeva Minta Thomas Stephanie L. Schmit Virginia Díez‐Obrero Matthew A.M. Devall Ferrán Moratalla-Navarro Juan Fernández‐Tajes Claire Palles Kitty Sherwood Sarah Briggs Victoria Svinti Kevin Donnelly Susan M. Farrington James P. Blackmur P G Vaughan-Shaw Xiao‐Ou Shu Yingchang Lu Peter Broderick James B. Studd Tabitha A. Harrison David V. Conti Fredrick R. Schumacher Marilena Melas Gad Rennert Mireia Obón‐Santacana Vicente Martín Jae Hwan Oh Jeongseon Kim Sun Ha Jee Keum Ji Jung Sun-Seog Kweon Min‐Ho Shin Aesun Shin Yoon‐Ok Ahn Dong-Hyun Kim Isao Oze Wanqing Wen Keitaro Matsuo Koichi Matsuda Chizu Tanikawa Zefang Ren Yu‐Tang Gao Wei‐Hua Jia John L. Hopper Mark A. Jenkins Aung Ko Win Rish K. Pai Jane C. Figueiredo Robert W. Haile Steven Gallinger Michael O. Woods Polly A. Newcomb David Duggan Jeremy P. Cheadle Richard Kaplan Rachel Kerr David Kerr Iva Kirac Jan Böhm Jukka‐Pekka Mecklin Pekka Jousilahti Paul Knekt Lauri A. Aaltonen Harri Rissanen ­Eero Pukkala Johan G. Eriksson Tatiana Cajuso Ulrika A. Hänninen Johanna Kondelin Kimmo Palin Tomas Tanskanen Laura Renkonen‐Sinisalo Satu Männistö Demetrius Albanes Stephanie J. Weinstein Edward A. Ruiz‐Narváez Julie R. Palmer Daniel D. Buchanan Elizabeth A. Platz Kala Visvanathan Cornelia M. Ulrich Erin M. Siegel Stefanie Brezina Andrea Gsur Peter T. Campbell Jenny Chang‐Claude Michael Hoffmeister Hermann Brenner

10.17615/f3mg-7f39 article EN cc-by Carolina Digital Repository (University of North Carolina at Chapel Hill) 2024-04-26

Abstract Background: Polygenic risk scores (PRS) which summarize individuals’ genetic profile may enhance targeted colorectal cancer screening. A critical step towards clinical implementation is rigorous external validations in large community-based cohorts. This study externally validated a PRS-enhanced model comprising 140 known loci to provide comprehensive assessment on prediction performance. Methods: The was developed using 20,338 individuals and cohort (n = 85,221). We predicted...

10.1158/1055-9965.epi-22-0817 article EN Cancer Epidemiology Biomarkers & Prevention 2023-01-09

Abstract Background Colorectal cancer (CRC) is a complex disease with monogenic, polygenic and environmental risk factors. Polygenic scores (PRS) are being developed to identify high individuals. Due differences in genetic background, PRS distributions vary by ancestry, necessitating calibration. Methods We compared four calibration methods using the All of Us Research Program Whole Genome Sequence data for CRC previously participants European East Asian ancestry. The contrasted results from...

10.1101/2023.10.23.23296753 preprint EN medRxiv (Cold Spring Harbor Laboratory) 2023-10-24

We propose a method, maximum likelihood estimation of generalized eigenvalue decomposition (MLGEVD) that employs well known technique relying on the generalization singular value (SVD). The main aim work is to show tight equivalence between MLGEVD and ridge regression. This relationship reveals an important mathematical property GEVD in which second argument act as prior information model. Thus we allows incorporation external knowledge about quantities interest into problem. illustrate...

10.1109/tcbb.2014.2304292 article EN IEEE/ACM Transactions on Computational Biology and Bioinformatics 2014-02-03
Minta Thomas Yu‐Ru Su Elisabeth A. Rosenthal Lori C. Sakoda Stephanie L. Schmit and 95 more Maria Timofeeva Zhishan Chen Ceres Fernández‐Rozadilla Philip Law Neil Murphy Robert Carreras‐Torres Virginia Díez‐Obrero Fränzel JB van Duijnhoven Shangqing Jiang Aesun Shin Alicja Wolk Amanda I. Phipps Andrea N. Burnett‐Hartman Andrea Gsur Andrew T. Chan Ann G. Zauber Anna H. Wu Annika Lindblom Caroline Y. Um Catherine M. Tangen Chris Gignoux Christina C. Newton Christopher A. Haiman Conghui Qu D. Timothy Bishop Daniel D. Buchanan David R. Crosslin David V. Conti Dong-Hyun Kim Elizabeth R. Hauser Emily White Erin M. Siegel Fredrick R. Schumacher Gad Rennert Graham G. Giles Heather Hampel Hermann Brenner Isao Oze Jae Hwan Oh Jeffrey K. Lee Jennifer L. Schneider Jenny Chang‐Claude Jeongseon Kim Jeroen R. Huyghe Jiayin Zheng Jochen Hampe Joel K. Greenson John L. Hopper Julie R. Palmer Kala Visvanathan Keitaro Matsuo Koichi Matsuda Keum Ji Jung Li Li Loı̈c Le Marchand Ludmila Vodičková Luís Bujanda Marc J. Gunter Marco Matejcic Mark A. Jenkins Martha L. Slattery Mauro DʼAmato Meilin Wang Michael Hoffmeister Michael O. Woods Michelle Kim Mingyang Song Motoki Iwasaki Mulong Du Natalia Udaltsova Norie Sawada Pavel Vodička Peter T. Campbell Polly A. Newcomb Qiuyin Cai Rachel Pearlman Rish K. Pai Robert E. Schoen Robert S. Steinfelder Robert W. Haile Rosita Vandenputtelaar Ross L. Prentice Sébastien Küry Sergi Castellví–Bel Shoichiro Tsugane Sonja I. Berndt Soo Chin Lee Stefanie Brezina Stephanie J. Weinstein Stephen J. Chanock Sun Ha Jee Sun‐Seog Kweon Susan T. Vadaparampil Tabitha A. Harrison Taiki Yamaji

Abstract Polygenic risk scores (PRS) have great potential to guide precision colorectal cancer (CRC) prevention by identifying those at higher undertake targeted screening. However, current PRS using European ancestry data sub-optimal performance in non-European populations, limiting their utility among these populations. Towards addressing this deficiency, we expanded development for CRC incorporating Asian (21,731 cases; 47,444 controls) into training datasets (78,473 107,143 controls)....

10.1101/2023.01.19.23284737 preprint EN cc-by-nc-nd medRxiv (Cold Spring Harbor Laboratory) 2023-01-19

Abstract Background Conventional observational studies have reported conflicting results regarding the association between low density lipoprotein cholesterol (LDL-C) and risk of colorectal cancer (CRC). We conducted a Mendelian randomization analysis to address this association. Methods Single-nucleotide polymorphisms (SNPs) associated with five blood lipids (total cholesterol, HDL-C, high-density [HDL-C], non-HDL-C, triglyceride) were obtained from genome-wide study (GWAS) meta-analysis...

10.1158/1538-7445.am2023-5223 article EN Cancer Research 2023-04-04
Coming Soon ...