Thomas R. Clandinin

ORCID: 0000-0001-6277-6849
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Neurobiology and Insect Physiology Research
  • Retinal Development and Disorders
  • Animal Behavior and Reproduction
  • Neural dynamics and brain function
  • Insect and Arachnid Ecology and Behavior
  • Axon Guidance and Neuronal Signaling
  • Circadian rhythm and melatonin
  • Genetics, Aging, and Longevity in Model Organisms
  • Developmental Biology and Gene Regulation
  • Visual perception and processing mechanisms
  • Zebrafish Biomedical Research Applications
  • Photoreceptor and optogenetics research
  • CRISPR and Genetic Engineering
  • Physiological and biochemical adaptations
  • Neuroscience and Neural Engineering
  • Plant and Biological Electrophysiology Studies
  • Advanced Fluorescence Microscopy Techniques
  • Cell Image Analysis Techniques
  • Insect behavior and control techniques
  • Silk-based biomaterials and applications
  • Plant and animal studies
  • Viral Infectious Diseases and Gene Expression in Insects
  • Spaceflight effects on biology
  • Electrochemical Analysis and Applications
  • Olfactory and Sensory Function Studies

Stanford University
2015-2024

Chan Zuckerberg Initiative (United States)
2024

Stanford Medicine
2021-2023

Fairchild Semiconductor (United States)
2023

Institute of Neurobiology
2011-2016

ORCID
2014

Howard Hughes Medical Institute
1995-2005

University of Oregon
2005

University of California, Los Angeles
1998-2003

California Institute of Technology
1995-1998

Hongjie Li Jasper Janssens Maxime De Waegeneer Sai Saroja Kolluru Kristofer Davie and 95 more Vincent Gardeux Wouter Saelens Fabrice David Maria Brbić Katina I. Spanier Jure Leskovec Colleen N. McLaughlin Qijing Xie Robert C. Jones Katja Brueckner Jiwon Shim Sudhir Gopal Tattikota Frank Schnorrer Katja Rust Todd Nystul Zita Carvalho-Santos Carlos Ribeiro Soumitra Pal Sharvani Mahadevaraju Teresa M. Przytycka Aaron M. Allen Stephen F. Goodwin Cameron W. Berry Margaret T. Fuller Helen White‐Cooper Erika Matunis Stephen DiNardo Anthony Galenza Lucy Erin O’Brien Julian A. T. Dow Heinrich Jasper Brian Oliver Norbert Perrimon Bart Deplancke Stephen R. Quake Liqun Luo Stein Aerts Devika Agarwal Yasir H. Ahmed-Braimah Michelle N Arbeitman Majd Ariss Jordan Augsburger Kumar Ayush Catherine C. Baker Torsten U. Banisch Katja Birker Rolf Bodmer Benjamin Bolival Susanna E. Brantley Julie A. Brill Nora C. Brown Norene A. Buehner Xiaoyu Cai Rita Cardoso-Figueiredo Fernando Casares Amy K. Chang Thomas R. Clandinin Sheela Crasta Claude Desplan Angela M. Detweiler Darshan B. Dhakan Erika Donà Stefanie Engert Swann Floc’hlay Nancy George Amanda J. González-Segarra Andrew K. Groves Samantha C. Gumbin Yanmeng Guo D. Harris Yael Heifetz Stephen L. Holtz Felix Horns Bruno Hudry Ruei‐Jiun Hung Yuh Nung Jan Jacob S Jaszczak Gregory S.X.E. Jefferis Jim Karkanias Timothy L. Karr Nadja Sandra Katheder James Kezos Anna Kim Seung K. Kim Lutz Kockel Νικόλαος Κωνσταντινίδης Thomas B. Kornberg Henry M. Krause Andrew Thomas Labott Meghan Laturney Ruth Lehmann Sarah G. Leinwand Jun Li Joshua Shing Shun Li Kai Li

For more than 100 years, the fruit fly

10.1126/science.abk2432 article EN Science 2022-03-03

Monitoring voltage dynamics in defined neurons deep the brain is critical for unraveling function of neuronal circuits but challenging due to limited performance existing tools. In particular, while genetically encoded indicators have shown promise optical detection transients, many exhibit low sensitivity when imaged under two-photon illumination. Previous studies thus fell short visualizing individual single trials. Here, we report ASAP2s, a novel indicator with improved sensitivity. By...

10.7554/elife.25690 article EN cc-by eLife 2017-07-27

Genetically encoded voltage indicators are emerging tools for monitoring dynamics with cell-type specificity. However, current enable a narrow range of applications due to poor performance under two-photon microscopy, method choice deep-tissue recording. To improve indicators, we developed multiparameter high-throughput platform optimize microscopy. Using this system, identified JEDI-2P, an indicator that is faster, brighter, and more sensitive photostable than its predecessors. We...

10.1016/j.cell.2022.07.013 article EN cc-by-nc Cell 2022-08-18

Across animal phyla, motion vision relies on neurons that respond preferentially to stimuli moving in one, preferred direction over the opposite, null direction. In elementary detector of <i>Drosophila</i>, selectivity emerges two neuron types, T4 and T5, but computational algorithm underlying this remains unknown. We find receptive fields both T5 exhibit spatiotemporally offset light-preferring dark-preferring subfields, each obliquely oriented spacetime. a linear-nonlinear modeling...

10.1523/jneurosci.1272-16.2016 article EN Journal of Neuroscience 2016-08-03

Abstract Originally a genetic model organism, the experimental use of Drosophila melanogaster has grown to include quantitative behavioral analyses, sophisticated perturbations neuronal function, and detailed sensory physiology. A highlight these developments can be seen in context vision, where pioneering studies have uncovered fundamental generalizable principles processing. Here we begin with an overview vision-guided behaviors common methods for probing visual circuits. We then outline...

10.1093/genetics/iyad064 article EN cc-by Genetics 2023-05-02
Coming Soon ...